Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Rotation estimates and spirals


Authors: Vladimir Gutlyanskii and Olli Martio
Journal: Conform. Geom. Dyn. 5 (2001), 6-20
MSC (2000): Primary 30C62, 30C65
DOI: https://doi.org/10.1090/S1088-4173-01-00060-1
Published electronically: March 30, 2001
MathSciNet review: 1836404
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

It is shown that the logarithmic spiral gives the extremum to F. John's angle distortion problem for plane bilipschitz mappings. The problem of factoring spiral-like mappings into a composition of homeomorphisms with smaller isometric distortion is studied. A space counterpart of the Freedman and He theorem is obtained.


References [Enhancements On Off] (What's this?)

  • [1] BELINSKII, P.P., General properties of quasiconformal mappings, Nauka, Novosibirsk, 1974. (Russian)MR 53:11054
  • [2] FREEDMAN, M.H. AND HE, Z-XU., Factoring the logarithmic spiral, Invent. Math., 92 (1988), 129-138. MR 89j:30026
  • [3] GEHRING, F., Spirals and the universal Teichmüller space, Acta Math., 141 (1978), 99-113. MR 58:17076
  • [4] GEHRING, F.W., Injectivity of local quasi-isometries, Comment. Math. Helvetici, 57 (1982), 202-220. MR 84b:30018
  • [5] GUTLYANSKII, V., MARTIO, O., VUORINEN, M., Rotation in space, University of Helsinki, Department of Mathematics, Preprint 215, (1999), 23 pp.
  • [6] GUTLYANSKII, V.YA., MARTIO, O., RYAZANOV, V.I., VUORINEN, M., On convergence theorems for space quasiregular mappings, Forum Math., V. 10 (1998), 353-375. MR 99f:30035
  • [7] JOHN, F., Rotation and strain, Comm. Pure Appl. Math., 14 (1961), 391-413. MR 25:1672
  • [8] JOHN, F., NIRENBERG, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426. MR 24:A1348
  • [9] JOHN, F., Uniqueness of non-linear elastic equilibrium for prescribed boundary displacements and sufficiently small strains, Comm. Pure Appl. Math., 25, (1972), 617-634. MR 47:3857
  • [10] LEHTO, O., On the differentiability of quasiconformal mappings with prescribed complex dilatation, Ann. Acad. Sci. Fenn. A I 275 (1960), 1-28. MR 23:A3260
  • [11] LEHTO, O., VIRTANEN, K., Quasiconformal Mappings in the Plane, Second ed., Translated from the German by K. W. Lucas. Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York-Heidelberg, 1973. MR 49:9202
  • [12] MARTIN, G., OSGOOD, B.G., The quasihyperbolic metric and the associated estimates on the hyperbolic metric, J. Analyse Math., 47 (1986), 37-53. MR 88e:30060
  • [13] REICH, E., STREBEL, K., Extremal quasiconformal mappings with given boundary values, In: Contribution to Analysis. A collection of papers dedicated to Lipman Bers. Academic Press, New-York-London, 1974, 375-391. MR 50:13511
  • [14] RESHETNYAK, YU. G., Stability theorems in geometry and analysis, Nauka, Sibirskoe otdelenie, Novosibirsk, (1982). (Russian) MR 96i:30016
  • [15] STREBEL, K., Ein Konvergenzsatz für Folgen quasikonformer Abbildungen, Comment. Math. Helv., 44 (1969), 469-475. MR 40:7444
  • [16] TEICHMÜLLER, O., Untersuchungen über konforme und quasikonforme Abbildung, Deutsche Math. 3 (1938), 621-678.
  • [17] VUORINEN, M., Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math. 1319 (1988), Springer-Verlag, Berlin-New York. MR 89k:30021

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C62, 30C65

Retrieve articles in all journals with MSC (2000): 30C62, 30C65


Additional Information

Vladimir Gutlyanskii
Affiliation: Institute of Applied Mathematics and Mechanics, NAS of Ukraine, ul. Roze Luxemburg 74, 340114, Donetsk, Ukraine
Email: gut@iamm.ac.donetsk.ua

Olli Martio
Affiliation: Department of Mathematics, P. O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland
Email: martio@cc.helsinki.fi

DOI: https://doi.org/10.1090/S1088-4173-01-00060-1
Received by editor(s): March 17, 2000
Received by editor(s) in revised form: January 4, 2001
Published electronically: March 30, 2001
Additional Notes: The authors thank the Mittag-Leffler Institute for financial support during the fall of the academic year 1999/2000
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society