Conformal Geometry and Dynamics

ISSN 1088-4173

 

 

Rotation estimates and spirals


Authors: Vladimir Gutlyanskii and Olli Martio
Journal: Conform. Geom. Dyn. 5 (2001), 6-20
MSC (2000): Primary 30C62, 30C65
Published electronically: March 30, 2001
MathSciNet review: 1836404
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

It is shown that the logarithmic spiral gives the extremum to F. John's angle distortion problem for plane bilipschitz mappings. The problem of factoring spiral-like mappings into a composition of homeomorphisms with smaller isometric distortion is studied. A space counterpart of the Freedman and He theorem is obtained.


References [Enhancements On Off] (What's this?)

  • [1] P. P. Belinskii, Obshchie svoistva kvazikonformnykh otobrazhenii, Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1974 (Russian). MR 0407275
  • [2] Michael H. Freedman and Zheng-Xu He, Factoring the logarithmic spiral, Invent. Math. 92 (1988), no. 1, 129–138. MR 931207, 10.1007/BF01393995
  • [3] F. W. Gehring, Spirals and the universal Teichmüller space, Acta Math. 141 (1978), no. 1-2, 99–113. MR 0499134
  • [4] F. W. Gehring, Injectivity of local quasi-isometries, Comment. Math. Helv. 57 (1982), no. 2, 202–220. MR 684113, 10.1007/BF02565857
  • [5] GUTLYANSKII, V., MARTIO, O., VUORINEN, M., Rotation in space, University of Helsinki, Department of Mathematics, Preprint 215, (1999), 23 pp.
  • [6] V. Ya. Gutlyanskiĭ, O. Martio, V. I. Ryazanov, and M. Vuorinen, On convergence theorems for space quasiregular mappings, Forum Math. 10 (1998), no. 3, 353–375. MR 1619727, 10.1515/form.10.3.353
  • [7] Fritz John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391–413. MR 0138225
  • [8] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 0131498
  • [9] Fritz John, Uniqueness of non-linear elastic equilibrium for prescribed boundary displacements and sufficiently small strains, Comm. Pure Appl. Math. 25 (1972), 617–634. MR 0315308
  • [10] Olli Lehto, On the differentiability of quasiconformal mappings with prescribed complex dilatation, Ann. Acad. Sci. Fenn. Ser. A I No. 275 (1960), 28. MR 0125963
  • [11] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR 0344463
  • [12] Gaven J. Martin and Brad G. Osgood, The quasihyperbolic metric and associated estimates on the hyperbolic metric, J. Analyse Math. 47 (1986), 37–53. MR 874043, 10.1007/BF02792531
  • [13] Edgar Reich and Kurt Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR 0361065
  • [14] Yu. G. Reshetnyak, Stability theorems in geometry and analysis, Mathematics and its Applications, vol. 304, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated from the 1982 Russian original by N. S. Dairbekov and V. N. Dyatlov, and revised by the author; Translation edited and with a foreword by S. S. Kutateladze. MR 1326375
  • [15] Kurt Strebel, Ein Konvergenzsatz für Folgen quasikonformer Abbildungen, Comment. Math. Helv. 44 (1969), 469–475 (German). MR 0254235
  • [16] TEICHMÜLLER, O., Untersuchungen über konforme und quasikonforme Abbildung, Deutsche Math. 3 (1938), 621-678.
  • [17] Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C62, 30C65

Retrieve articles in all journals with MSC (2000): 30C62, 30C65


Additional Information

Vladimir Gutlyanskii
Affiliation: Institute of Applied Mathematics and Mechanics, NAS of Ukraine, ul. Roze Luxemburg 74, 340114, Donetsk, Ukraine
Email: gut@iamm.ac.donetsk.ua

Olli Martio
Affiliation: Department of Mathematics, P. O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland
Email: martio@cc.helsinki.fi

DOI: http://dx.doi.org/10.1090/S1088-4173-01-00060-1
Received by editor(s): March 17, 2000
Received by editor(s) in revised form: January 4, 2001
Published electronically: March 30, 2001
Additional Notes: The authors thank the Mittag-Leffler Institute for financial support during the fall of the academic year 1999/2000
Article copyright: © Copyright 2001 American Mathematical Society