Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



Riemann-Roch-Hirzebruch integral formula for characters of reductive Lie groups

Author: Matvei Libine
Journal: Represent. Theory 9 (2005), 507-524
MSC (2000): Primary 22E45; Secondary 32C38, 19L10, 55N91
Published electronically: August 29, 2005
MathSciNet review: 2167904
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G_{\mathbb R}$ be a real reductive Lie group acting on a manifold $M$. M. Kashiwara and W. Schmid constructed representations of $G_{\mathbb R}$ using sheaves and quasi- $G_{\mathbb R}$-equivariant ${\mathcal D}$-modules on $M$. In this article we prove an integral character formula for these representations (Theorem 1). Our main tools will be the integral localization formula recently proved by the author and the integral character formula proved by W. Schmid and K. Vilonen (originally established by W. Rossmann) in the important special case when the manifold $M$ is the flag variety of $\mathbb C \otimes_{\mathbb R} \mathfrak g_{\mathbb R}$--the complexified Lie algebra of $G_{\mathbb R}$. In the special case when $G_{\mathbb R}$ is commutative and the ${\mathcal D}$-module is the sheaf of sections of a $G_{\mathbb R}$-equivariant line bundle over $M$ this integral character formula will reduce to the classical Riemann-Roch-Hirzebruch formula. As an illustration we give a concrete example on the enhanced flag variety.

References [Enhancements On Off] (What's this?)

  • [BB] A. Beilinson and J. Bernstein, Localisation de $\mathfrak g$-modules, C. R. Acad. Sci. Paris 292 (1981), 15-18. MR 0610137 (82k:14015)
  • [BGV] N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, 1992. MR 1215720 (94e:58130)
  • [BV] N. Berline and M. Vergne, Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982), 539-541. MR 0685019 (83m:58002)
  • [Bi] A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math., 98 (1973), 480-497. MR 0366940 (51 #3186)
  • [Bo] A. Borel et al., Algebraic ${\mathcal D}$-modules, Perspectives in Mathematics, Academic Press, 1987. MR 0882000 (89g:32014)
  • [Gi] V. Ginzburg, $\mathfrak g$-modules, Springer's representations and bivariant Chern classes, Advances in Math. 61 (1986), 1-48. MR 0847727 (87k:17014)
  • [GM] M. Goresky and R. MacPherson, Local contribution to the Lefschetz fixed point formula, Inventiones Math. 111 (1993), 1-33. MR 1193595 (94b:55009)
  • [GS] V. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Springer-Verlag, 1999. MR 689252 (2001i:53140)
  • [Ka] M. Kashiwara, Character, character cycle, fixed point theorem, and group representations, Advanced Studies in Pure Mathematics, vol. 14, Kyoto, Hiroshima, 1986, 369-378. MR 1039844 (91h:22029)
  • [KaMF] M. Kashiwara and T. Monteiro-Fernandes, Involutivité des variétés microcaractéristiques, Bull. Soc. Math. France 114 (1986), 393-402. MR 0882587 (88c:58061)
  • [KaScha] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Springer-Verlag, 1990. MR 1074006 (92a:58132)
  • [KaSchm] M. Kashiwara and W. Schmid, Quasi-equivariant ${\mathcal D}$-modules, equivariant derived category, and representations of reductive Lie groups, Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, vol. 123, Birkhäuser, Boston, 1994, pp. 457-488. MR 1327544 (96e:22031)
  • [L1] M. Libine, A localization argument for characters of reductive Lie groups, Jour. Funct. Anal. 203 (2003), 197-236; also math.RT/0206019. MR 1996871 (2004h:22007)
  • [L2] M. Libine, A localization argument for characters of reductive Lie groups: an introduction and examples in P. Delorme, M. Vergne (Eds.), ``Noncommutative Harmonic Analysis: In Honor of Jacques Carmona'', Progress in Mathematics, vol. 220, Birkhäuser, 2004, pp. 375-394; also math.RT/0208024. MR 2036577 (2005b:22019)
  • [L3] M. Libine, Integrals of equivariant forms and a Gauss-Bonnet theorem for constructible sheaves, math.DG/0306152, 2003.
  • [MQ] V. Mathai and D. Quillen, Superconnections, Thom classes and equivariant differential forms, Topology 25 (1986), 85-110. MR 0836726 (87k:58006)
  • [Ro] W. Rossmann, Invariant Eigendistributions on a Semisimple Lie Algebra and Homology Classes on the Conormal Variety I, II, Jour. Funct. Anal. 96 (1991), 130-193. MR 1093510 (92g:22033); MR 1093511 (92g:22034)
  • [Sch] W. Schmid, Character formulas and localization of integrals, Deformation Theory and Symplectic Geometry, Mathematical Physics Studies, 20 (1997), Kluwer Academic Publishers, 259-270. MR 1480727 (98k:22074)
  • [SchV1] W. Schmid and K. Vilonen, Characteristic cycles of constructible sheaves, Inventiones Math. 124 (1996), 451-502. MR 1369425 (96k:32016)
  • [SchV2] W. Schmid and K. Vilonen, Two geometric character formulas for reductive Lie groups, Jour. AMS 11 (1998), 799-867. MR 1612634 (2000g:22020)
  • [Schü] J. Schürmann, Topology of Singular Spaces and Constructible Sheaves, Monografie Matematyczne, vol. 63, Birkhäuser, 2003. MR 2031639 (2005f:32053)
  • [Su] H. Sumihiro, Equivariant Completion, J. Math. Kyoto Univ. 14 (1974), 1-28. MR 0337963 (49 #2732)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 22E45, 32C38, 19L10, 55N91

Retrieve articles in all journals with MSC (2000): 22E45, 32C38, 19L10, 55N91

Additional Information

Matvei Libine
Affiliation: Department of Mathematics and Statistics, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, Massachusetts 01003
Address at time of publication: Department of Mathematics, Yale University, P.O. Box 208283, New Haven, Connecticut 06520-8283

Keywords: Equivariant sheaves and ${\mathcal D}$-modules, characteristic cycles of sheaves and ${\mathcal D}$-modules, integral character formula, fixed point integral localization formula, fixed point character formula, representations of reductive Lie groups, equivariant forms
Received by editor(s): January 25, 2004
Received by editor(s) in revised form: February 23, 2005
Published electronically: August 29, 2005
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society