Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Euler's ``exemplum memorabile inductionis fallacis'' and $ q$-trinomial coefficients


Author: George E. Andrews
Journal: J. Amer. Math. Soc. 3 (1990), 653-669
MSC: Primary 05A10; Secondary 05A30, 11B65
DOI: https://doi.org/10.1090/S0894-0347-1990-1040390-4
MathSciNet review: 1040390
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The trinomial coefficients are defined centrally by $ \Sigma _{j = - m}^\infty {(_j^m)_2}{x^j} = {(1 + x + {x^{ - 1}})^m}$. Euler observed that for $ - 1 \leq m \leq 7$, $ 3{(_{\,\;0}^{m + 1})_2} - {(_{\,\;0}^{m + 2})_2} = {F_m}({F_m} + 1)$, where $ {F_m}$ is the $ m$th Fibonacci number. The assertion is false for $ m > 7$. We prove general identities--one of which reduces to Euler's assertion for $ m \leq 7$. Our main object is to analyze $ q$-analogs extending Euler's observation. Among other things we are led to finite versions of dissections of the Rogers-Ramanujan identities into even and odd parts.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Andrews, Sieves in the theory of partitions, Amer. J. Math. 94 (1972), 1214-1230. MR 0319883 (47:8424)
  • [2] -, The theory of partitions, Encyclopedia of Mathematics and Its Applications (G.-C. Rota, ed.), vol. 2, Addison-Wesley, Reading, MA, 1976; reissued by Cambridge Univ. Press, London and New York, 1985. MR 0557013 (58:27738)
  • [3] -, The hard-hexagon model and Rogers-Ramanujan type identities, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 5290-5292. MR 629656 (82m:82005)
  • [4] -, Uses and extensions of Frobenius' representation of partitions, Enumeration and Design (D. M. Jackson and S. A. Vanstone, eds.), Academic Press, 1984, pp. 51-65. MR 782308 (86h:05015)
  • [5] G. E. Andrews and R. J. Baxter, Lattice gas generalization of the hard hexagon model. III. $ q$-trinomial coefficients, J. Statist. Phys. 47 (1987), 297-330. MR 894396 (88h:82069)
  • [6] -, SCRATCHPAD explorations for elliptic theta functions (Proc. 1986 Stanford Computers and Mathematics Conf.), Computers in Mathematics (D. Chudnovsky and R. Jenks, eds.), Marcel Dekker, New York (to appear). MR 1002975 (90a:00021)
  • [7] G. E. Andrews, R. J. Baxter, D. M. Bressoud, W. H. Burge, P. J. Forrester, and G. Viennot, Partitions with prescribed hook differences, European J. Combin. 8 (1987), 341-350. MR 930170 (89g:05014)
  • [8] G. E. Andrews, R. J. Baxter, and P. J. Forrester, Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Statist. Phys. 35 (1984), 193-266. MR 748075 (86a:82001)
  • [9] D. M. Bressoud, Extension of the partition sieve, J. Number Theory 12 (1980), 87-100. MR 566873 (82e:10022)
  • [10] W. H. Burge, A correspondence between partitions related to generalizations of the Rogers-Ramanujan identities, Discrete Math. 34 (1981), 9-15. MR 605226 (82e:05020)
  • [11] L. Comtet, Advanced combinatorics, Reidel, Dordrecht and Boston, 1974. MR 0460128 (57:124)
  • [12] L. Euler, Observations analyticae, Novi Commentarii Academiae Scientarum Petropolitanae 11 (1765), 124-143; also in Opera Omnia, Series 1, vol. 15, Teubner, pp. 50-69.
  • [13] I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur theorie der Kettenbrüche, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl., 1917, pp. 302-321; reprinted in Gesammelte Abhandlungen, vol. 2, Springer, Berlin, 1973, pp. 117-136.
  • [14] L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167. MR 0049225 (14:138e)
  • [15] M. Spiegel, Finite differences and difference equations, McGraw-Hill, New York, 1971.
  • [16] G. N. Watson, Proof of certain identities in combinatory analysis, J. Indian Math. Soc. 20 (1934), 57-69.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 05A10, 05A30, 11B65

Retrieve articles in all journals with MSC: 05A10, 05A30, 11B65


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1990-1040390-4
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society