Polynomial diffeomorphisms of . II. Stable manifolds and recurrence
Authors:
Eric Bedford and John Smillie
Journal:
J. Amer. Math. Soc. 4 (1991), 657679
MSC:
Primary 32H50; Secondary 32C30, 54H20, 58F23
MathSciNet review:
1115786
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [BBD]
David
E. Barrett, Eric
Bedford, and Jiri
Dadok, 𝑇ⁿactions on holomorphically separable
complex manifolds, Math. Z. 202 (1989), no. 1,
65–82. MR
1007740 (90k:32003), http://dx.doi.org/10.1007/BF01180684
 [B]
Eric
Bedford, On the automorphism group of a Stein manifold, Math.
Ann. 266 (1983), no. 2, 215–227. MR 724738
(85h:32049), http://dx.doi.org/10.1007/BF01458443
 [BS1]
Eric
Bedford and John
Smillie, Polynomial diffeomorphisms of 𝐶²: currents,
equilibrium measure and hyperbolicity, Invent. Math.
103 (1991), no. 1, 69–99. MR 1079840
(92a:32035), http://dx.doi.org/10.1007/BF01239509
 [BS2]
Eric
Bedford and John
Smillie, FatouBieberbach domains arising from polynomial
automorphisms, Indiana Univ. Math. J. 40 (1991),
no. 2, 789–792. MR 1119197
(92k:32044), http://dx.doi.org/10.1512/iumj.1991.40.40035
 [Bi]
B. Bielefeld, Conformal dynamics problem list, SUNY Stony Brook Institute for Mathematical Sciences, preprint, 1990.
 [FM]
Shmuel
Friedland and John
Milnor, Dynamical properties of plane polynomial
automorphisms, Ergodic Theory Dynam. Systems 9
(1989), no. 1, 67–99. MR 991490
(90f:58163), http://dx.doi.org/10.1017/S014338570000482X
 [H]
M. Herman, Recent results and some open questions on Siegel's linearization theorem of germs of complex analytic diffeomorphisms of near a fixed point, VIIIth International Congress on Mathematical Physics (Marseille, 1986), World Scientific Publ. Singapore, 1987, pp. 138184.
 [Ho]
Lars
Hörmander, An introduction to complex analysis in several
variables, 3rd ed., NorthHolland Mathematical Library, vol. 7,
NorthHolland Publishing Co., Amsterdam, 1990. MR 1045639
(91a:32001)
 [HO]
J. H. Hubbard and R. ObersteVorth, Hénon mappings in the complex domain, in preparation.
 [K]
Anatole
Katok, Nonuniform hyperbolicity and structure of smooth dynamical
systems, Proceedings of the International Congress of Mathematicians,
Vol.\ 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 1245–1253. MR 804774
(87h:58173)
 [N]
Sheldon
E. Newhouse, The creation of nontrivial recurrence in the dynamics
of diffeomorphisms, Chaotic behavior of deterministic systems (Les
Houches, 1981) NorthHolland, Amsterdam, 1983, pp. 381–442. MR 724468
(85d:58047)
 [RR]
JeanPierre
Rosay and Walter
Rudin, Holomorphic maps from
𝐶ⁿ to 𝐶ⁿ, Trans.
Amer. Math. Soc. 310 (1988), no. 1, 47–86. MR 929658
(89d:32058), http://dx.doi.org/10.1090/S00029947198809296584
 [S]
John
Smillie, The entropy of polynomial diffeomorphisms of
𝐶², Ergodic Theory Dynam. Systems 10
(1990), no. 4, 823–827. MR 1091429
(92b:58131), http://dx.doi.org/10.1017/S0143385700005927
 [Z]
Eduard
Zehnder, A simple proof of a generalization of a theorem by C. L.
Siegel, Geometry and topology (Proc. III Latin Amer. School of Math.,
Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Springer, Berlin,
1977, pp. 855–866. Lecture Notes in Math., Vol. 597. MR 0461575
(57 #1560)
 [BBD]
 D. Barret, E. Bedford, and J. Dadok, actions on holomorphically separable complex manifolds, Math. Z. 202 (1989), 6582. MR 1007740 (90k:32003)
 [B]
 E. Bedford, On the automorphism group of a Stein manifold, Math. Ann. 266 (1983), 215227. MR 724738 (85h:32049)
 [BS1]
 E. Bedford and J. Smillie, Polynomial diffeomorphisms of : currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), 6999. MR 1079840 (92a:32035)
 [BS2]
 , FatouBieberbach domains arising from polynomial automorphisms, Indiana U. Math. J. 40 (1991), 789792. MR 1119197 (92k:32044)
 [Bi]
 B. Bielefeld, Conformal dynamics problem list, SUNY Stony Brook Institute for Mathematical Sciences, preprint, 1990.
 [FM]
 S. Friedland and J. Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynamical Systems 9 (1989), 6799. MR 991490 (90f:58163)
 [H]
 M. Herman, Recent results and some open questions on Siegel's linearization theorem of germs of complex analytic diffeomorphisms of near a fixed point, VIIIth International Congress on Mathematical Physics (Marseille, 1986), World Scientific Publ. Singapore, 1987, pp. 138184.
 [Ho]
 L. Hörmander, An introduction to complex analysis in several variables, NorthHolland, 1973. MR 1045639 (91a:32001)
 [HO]
 J. H. Hubbard and R. ObersteVorth, Hénon mappings in the complex domain, in preparation.
 [K]
 A. Katok, Nonuniform hyperbolicity and structure of smooth dynamical systems, Proc. Internat. Congr. Math., Warsaw, 1983. MR 804774 (87h:58173)
 [N]
 S. Newhouse, The creation of nontrivial recurrence in the dynamics of diffeomorphisms, Les Houches session XXXVI, Chaotic Behavior of Deterministic Systems (G. Iooss et al., eds.), NorthHolland, 1983, pp. 381442. MR 724468 (85d:58047)
 [RR]
 J.P. Rosay and W. Rudin, Holomorphic maps from to , Trans. Amer. Math. Soc. 310 (1988), 4786. MR 929658 (89d:32058)
 [S]
 J. Smillie, The entropy of polynomial diffeomorphisms of , Ergodic Theory Dynamical Systems (to appear). MR 1091429 (92b:58131)
 [Z]
 E. Zehnder, A simple proof of a generalization of a Theorem by C. L. Siegel, Geometry and Topology (J. Palis and M. do Carmo, eds.), Lecture Notes in Math., vol. 597, SpringerVerlag, New York, 1977, pp. 855866. MR 0461575 (57:1560)
Similar Articles
Retrieve articles in Journal of the American Mathematical Society
with MSC:
32H50,
32C30,
54H20,
58F23
Retrieve articles in all journals
with MSC:
32H50,
32C30,
54H20,
58F23
Additional Information
DOI:
http://dx.doi.org/10.1090/S08940347199111157863
PII:
S 08940347(1991)11157863
Article copyright:
© Copyright 1991
American Mathematical Society
