Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity


Authors: L. C. Evans and S. Müller
Journal: J. Amer. Math. Soc. 7 (1994), 199-219
MSC: Primary 35Q30; Secondary 46E30, 76C05
DOI: https://doi.org/10.1090/S0894-0347-1994-1220787-3
MathSciNet review: 1220787
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that certain quadratic expressions involving the gradient of a weakly superharmonic function in $ {\mathbb{R}^2}$ belong to a local Hardy space. As an application we provide a new proof of J.-M. Delort's convergence theorem for solutions of the two-dimensional Euler equations with vorticities of one sign.


References [Enhancements On Off] (What's this?)

  • [1] S. Alinhac, Un phénomène de concentration évanescente pour des flots non-stationnaires incompressibles en dimension deux, preprint, 1989. MR 1040896 (91d:35171)
  • [2] R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compacité par compensation et espaces de Hardy, C.R. Acad. Sci. Paris Ser. I Math. 309 (1991), 945-949. MR 1054740 (91h:46058)
  • [3] J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), 553-586. MR 1102579 (92f:76019)
  • [4] R. DiPerna and A. Majda, Reduced Hausdorff dimension and concentration cancellation for two-dimensional incompressible flow, J. Amer. Math. Soc. 1 (1988), 59-95. MR 924702 (89e:35126)
  • [5] -, Oscillations and concentrations in weak solutions of the incompressible flow equations, Comm. Math. Phys. 108 (1987), 667-689. MR 877643 (88a:35187)
  • [6] -, Concentrations in regularizations for $ 2 - D$ compressible flow, Comm. Pure Appl. Math. 40 (1987), 301-345. MR 882068 (88e:35149)
  • [7] L. C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conf. Ser. in Math., no. 74, Amer. Math. Soc., Providence, RI, 1990. MR 1034481 (91a:35009)
  • [8] C. Fefferman and E. Stein, $ \mathcal{H}^{p}$ spaces of several variables, Acta. Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • [9] J. Frehse, Capacity methods in the theory of partial differential equations, Jber. Deutsch. Math.-Verein 84 (1982), 1-44. MR 644068 (83j:35040)
  • [10] J. Garnett and P. Jones, The distance in BMO to $ {L^\infty }$, Ann. of Math. (2) 108 (1978), 373-393. MR 506992 (80h:46037)
  • [11] -, BMO from dyadic BMO, Pacific J. Math. 99 (1982), 351-371. MR 658065 (85d:42021)
  • [12] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42. MR 523600 (80h:46052)
  • [13] P. Jones and J.-L. Journé, On weak convergence in $ {\mathcal{H}^1}({\mathbb{R}^2})$, Proc. Amer. Math. Soc. (to appear). MR 1159172 (94b:42011)
  • [14] T. Kato, On classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rational Mech. Anal. 25 (1967), 188-200. MR 0211057 (35:1939)
  • [15] R. Krasny, Computation of vortex sheet roll-up in the Treffitz plane, J. Fluid Mech. (1988). MR 979557
  • [16] R. H. Latter, A characterization of $ \mathcal{H}^{p}({\mathbb{R}^n})$ in terms of atoms, Studia Math. 62 (1973), 93-101. MR 0482111 (58:2198)
  • [17] H. Lopes, An estimate on the Hausdorff dimension of a concentration set for the incompressible Euler equations, Thesis, UC Berkeley, 1991.
  • [18] A. Majda, Vorticity and mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (1989), 187-220. MR 861488 (87j:76041)
  • [19] V. Scheffer, An inviscid flow with compact support in space-time, preprint, 1992. MR 1231007 (94h:35215)
  • [20] F. Schulz, Regularity theory for quasilinear elliptic systems and Monge-Ampère equations in two dimensions, Lecture Notes in Math., vol. 1445, Springer, New York, 1990. MR 1079936 (92d:35002)
  • [21] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, preprint, 1993. MR 1257006 (94j:46038)
  • [22] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [23] A. Torchinsky, Real variable methods in harmonic analysis, Academic Press, New York, 1986. MR 869816 (88e:42001)
  • [24] A. Uchiyama, The construction of certain BMO functions and the corona problem, Pacific J. Math. 99 (1982), 183-204. MR 651495 (84d:42022)
  • [25] V. I. Yudovich, Non-Stationary flow of an ideal incompressible liquid, Zh. Vych. Math. 3 (1963), 1032-1066. (Russian)
  • [26] Y. Zheng, Concentration-cancellation for the velocity fields in two dimensional incompressible fluid flows, Comm. Math. Phys. 135 (1991), 581-594. MR 1091579 (92e:35131)
  • [27] -, Regularity of weak solutions to a two dimensional modified Dirac-Klein-Gordon system of equations, Comm. Math. Phys. 151 (1993), 67-87. MR 1201656 (93k:35223)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 35Q30, 46E30, 76C05

Retrieve articles in all journals with MSC: 35Q30, 46E30, 76C05


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1994-1220787-3
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society