Global wellposedness of defocusing critical nonlinear Schrödinger equation

in the radial case

Author:
J. Bourgain

Journal:
J. Amer. Math. Soc. **12** (1999), 145-171

MSC (1991):
Primary 35Q55, 35L15.

MathSciNet review:
1626257

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish global wellposedness and scattering for the -critical defocusing NLS in 3D

assuming radial data , . In particular, it proves global existence of classical solutions in the radial case. The same result is obtained in 4D for the equation

**[L-S]**Jeng Eng Lin and Walter A. Strauss,*Decay and scattering of solutions of a nonlinear Schrödinger equation*, J. Funct. Anal.**30**(1978), no. 2, 245–263. MR**515228**, 10.1016/0022-1236(78)90073-3**[Str]**Michael Struwe,*Globally regular solutions to the 𝑢⁵ Klein-Gordon equation*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**15**(1988), no. 3, 495–513 (1989). MR**1015805****[Gr]**Manoussos G. Grillakis,*Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity*, Ann. of Math. (2)**132**(1990), no. 3, 485–509. MR**1078267**, 10.2307/1971427**[S-S]**Jalal Shatah and Michael Struwe,*Regularity results for nonlinear wave equations*, Ann. of Math. (2)**138**(1993), no. 3, 503–518. MR**1247991**, 10.2307/2946554**[Caz]**T. Cazenave,*An introduction to nonlinear Schrödinger equations*, Textos de Metodes Matematicos 26 (Rio de Janeiro).**[C-W]**Thierry Cazenave and Fred B. Weissler,*The Cauchy problem for the critical nonlinear Schrödinger equation in 𝐻^{𝑠}*, Nonlinear Anal.**14**(1990), no. 10, 807–836. MR**1055532**, 10.1016/0362-546X(90)90023-A**[G-V1]**J. Ginibre and G. Velo,*Scattering theory in the energy space for a class of nonlinear Schrödinger equations*, J. Math. Pures Appl. (9)**64**(1985), no. 4, 363–401. MR**839728****[G-V2]**Jean Ginibre and Giorgio Velo,*On a class of nonlinear Schrödinger equations with nonlocal interaction*, Math. Z.**170**(1980), no. 2, 109–136. MR**562582**, 10.1007/BF01214768**[S]**Robert S. Strichartz,*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), no. 3, 705–714. MR**0512086**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
35Q55,
35L15.

Retrieve articles in all journals with MSC (1991): 35Q55, 35L15.

Additional Information

**J. Bourgain**

Affiliation:
School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

Email:
bourgain@math.ias.edu

DOI:
https://doi.org/10.1090/S0894-0347-99-00283-0

Keywords:
Nonlinear Schr\"{o}dinger equation,
global wellposedness.

Received by editor(s):
April 20, 1998

Article copyright:
© Copyright 1999
American Mathematical Society