Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Journal of the American Mathematical Society
Journal of the American Mathematical Society
ISSN 1088-6834(online) ISSN 0894-0347(print)

 

The affine Plateau problem


Authors: Neil S. Trudinger and Xu-Jia Wang
Journal: J. Amer. Math. Soc. 18 (2005), 253-289
MSC (2000): Primary 35J40; Secondary 53A15
Published electronically: January 3, 2005
MathSciNet review: 2137978
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study a second order variational problem for locally convex hypersurfaces, which is the affine invariant analogue of the classical Plateau problem for minimal surfaces. We prove existence, regularity and uniqueness results for hypersurfaces maximizing affine area under appropriate boundary conditions.


References [Enhancements On Off] (What's this?)

  • 1. W. Blaschke, Vorlesungen über Differential geometrie, Berlin, 1923.
  • 2. L.A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. Math., 131(1990), 129-134. MR 1038359 (91f:35058)
  • 3. L.A. Caffarelli, Interior $W^{2,p}$ estimates for solutions of Monge-Ampère equations, Ann. Math., 131(1990), 135-150. MR 1038360 (91f:35059)
  • 4. L.A. Caffarelli and C.E. Gutiérrez, Properties of the solutions of the linearized Monge-Ampère equations, Amer. J. Math., 119(1997), 423-465. MR 1439555 (98e:35060)
  • 5. L.A. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampère equation, Comm. Pure Appl. Math., 37(1984), 369-402. MR 0739925 (87f:35096)
  • 6. E. Calabi, Hypersurfaces with maximal affinely invariant area, Amer. J. Math., 104(1982), 91-126. MR 0648482 (85b:53054)
  • 7. E. Calabi, Affine differential geometry and holomorphic curves, Lecture Notes Math., 1422(1990), 15-21. MR 1055839 (91c:53009)
  • 8. S.Y. Cheng and S.T. Yau, Complete affine hypersurfaces, I. The completeness of affine metrics, Comm. Pure Appl. Math., 39(1986), 839-866. MR 0859275 (87k:53127)
  • 9. S.S. Chern, Affine minimal hypersurfaces, in Minimal submanifolds and geodesics, Proc. Japan-United States Sem., Tokyo, 1977, 17-30.MR 0574250 (81e:53007)
  • 10. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1983. MR 0737190 (86c:35035)
  • 11. B. Guan and J. Spruck, Boundary value problems on $S\sp n$ for surfaces of constant Gauss curvature, Ann. of Math., 138(1993), 601-624. MR 1247995 (94i:53039)
  • 12. N. Ivochkina, A priori estimate of $\Vert u\Vert _{C^2({\overline \Omega})}$of convex solutions of the Dirichlet problem for the Monge-Ampère equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 96(1980), 69-79 (Russian). English translation in J. Soviet Math., 21(1983), 689-697. MR 0579472 (82b:35056)
  • 13. N.V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Reidel, Dordrecht-Boston, 1987. MR 0901759 (88d:35005)
  • 14. K. Leichtweiss, Affine geometry of convex bodies, Johann Ambrosius Barth Verlag, Heidelberg, 1998. MR 1630116 (2000j:52005)
  • 15. E. Lutwak, Extended affine surface area, Adv. Math., 85(1991), 39-68.MR 1087796 (92d:52012)
  • 16. K. Nomizu and T. Sasaki, Affine differential geometry, Cambridge University Press, 1994.MR 1311248 (96e:53014)
  • 17. A.V. Pogorelov, The muitidimensional Minkowski problems, J. Wiley, New York, 1978.MR 0478079 (57:17572)
  • 18. M.V. Safonov, Classical solution of second-order nonlinear elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat., 52(1988), 1272-1287 (Russian). English translation in Math. USSR-Izv., 33(1989), 597-612. MR 0984219 (90d:35104)
  • 19. W.M. Sheng, N.S. Trudinger, and X.-J. Wang, Enclosed convex hypersurfaces with maximal affine area, preprint.
  • 20. U. Simon, Affine differential geometry, in Handbook of differential geometry, North-Holland, Amsterdam, 2000, 905-961. MR 1736860 (2001c:53014)
  • 21. N.S. Trudinger and X.-J. Wang, The Bernstein problem for affine maximal hypersurfaces, Invent. Math., 140(2000), 399-422. MR 1757001 (2001h:53016)
  • 22. N.S. Trudinger and X.-J. Wang, On locally convex hypersurfaces with boundary, J. Reine Angew. Math., 551(2002), 11-32. MR 1932171 (2004b:58017)
  • 23. N.S. Trudinger and X.-J. Wang, On boundary regularity for the Monge-Ampère and affine maximal surface equations, preprint.
  • 24. X.-J. Wang, Affine maximal hypersurfaces, Proc. ICM, Vol. III, 2002, 221-231.MR 1957534 (2004j:35110)
  • 25. W. P. Ziemer, Weakly differentiable functions, Springer, 1989. MR 1014685 (91e:46046)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 35J40, 53A15

Retrieve articles in all journals with MSC (2000): 35J40, 53A15


Additional Information

Neil S. Trudinger
Affiliation: Centre for Mathematics and Its Applications, The Australian National University, Canberra, ACT 0200, Australia
Email: Neil.Trudinger@maths.anu.edu.au

Xu-Jia Wang
Affiliation: Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200, Australia
Email: X.J.Wang@maths.anu.edu.au

DOI: http://dx.doi.org/10.1090/S0894-0347-05-00475-3
PII: S 0894-0347(05)00475-3
Keywords: Affine Plateau problem, affine maximal hypersurface, affine area functional, affine maximal surface equation, variational problem, second boundary value problem, a priori estimates, strict convexity, interior regularity, Bernstein Theorem, Monge-Amp\`{e}re measure, curvature measure, Gauss mapping, locally convex hypersurface, generalized Legendre transform
Received by editor(s): September 3, 2003
Published electronically: January 3, 2005
Additional Notes: This research was supported by the Australian Research Council
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.