Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Calculation of Gamma functions to high accuracy

Authors: M. E. Sherry and S. Fulda
Journal: Math. Comp. 13 (1959), 314-315
MSC: Primary 65.00
MathSciNet review: 0108891
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] B. Zondek, ``The values of $ \Gamma (\tfrac{1}{3})$ and $ \Gamma (\tfrac{2}{3})$ and their logarithms accurate to 28 decimals,'' MTAC, v. 9, 1955, p. 24-25. MR 0068302 (16:861c)
  • [2] Air Force Cambridge Research Center Report, Cambridge Computer Interpretive Routine for Quadruple Precision Numbers, Series 3, TN-59-155, 1959.
  • [3] H. S. Uhler, ``Natural logarithms of small primary numbers,'' Proc., Nat. Acad. Sci., v. 29, 1943, p. 319-325. MR 0009149 (5:110a)
  • [4] H. S. Uhler, ``Log $ \pi $ and other basic constants,'' Proc., Nat. Acad. Sci., v. 24, 1938, p. 23-30.
  • [5] H. S. Uhler, ``The coefficients of Stirling's series for log $ \Gamma (x)$,'' Proc., Nat. Acad. Sci., v. 28, 1942, p. 59-62. MR 0006225 (3:275g)
  • [6] C. E. Van Orstrand, ``Tables of the exponential function and of the circular sine and cosine to radian argument,'' Mem., Nat. Acad. Sci., v. 14: 5, 1921 (Tables IV and V).

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.00

Retrieve articles in all journals with MSC: 65.00

Additional Information

Article copyright: © Copyright 1959 American Mathematical Society

American Mathematical Society