On amicable and sociable numbers
Author:
Henri Cohen
Journal:
Math. Comp. 24 (1970), 423429
MSC:
Primary 10.03
MathSciNet review:
0271004
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An exhaustive search has yielded 236 amicable pairs of which the lesser number is smaller than , 57 pairs being new. It has also yielded 9 new sociable groups of order 10 or less, of which the lesser number is smaller than ; the 9 sociable groups are all of order 4. The sequence of iterates of the function starting with 276 has also been extended to 119 terms.
 [1]
Edward
Brind Escott, Amicable numbers, Scripta Math.
12 (1946), 61–72. MR 0017293
(8,135a)
 [2]
P. Poulet, "43 new couples of amicable numbers," Scripta Math., v. 14. 1948. p. 77.
 [3]
Mariano
García, New amicable pairs, Scripta Math.
23 (1957), 167–171. MR 0098703
(20 #5158)
 [4]
Elvin
J. Lee, Amicable numbers and the bilinear
diophantine equation, Math. Comp. 22 (1968), 181–187. MR 0224543
(37 #142), http://dx.doi.org/10.1090/S00255718196802245439
 [5]
E. J. Lee, "The discovery of amicable numbers," J. Recreational Math. (To appear.)
 [6]
J.
Alanen, O.
Ore, and J.
Stemple, Systematic computations on amicable
numbers, Math. Comp. 21 (1967), 242–245. MR 0222006
(36 #5058), http://dx.doi.org/10.1090/S00255718196702220067
 [7]
Paul
Bratley and John
McKay, More amicable numbers, Math. Comp. 22 (1968), 677–678. MR 0225706
(37 #1299), http://dx.doi.org/10.1090/S00255718196802257069
 [8]
P. Poulet, L'intermédiaire des math., v. 25, 1918, pp. 100101.
 [9]
G. A. Paxson, Annapolis Meeting of the Mathematical Association of America, May 5th 1956.
 [10]
L. E. Dickson, "Theorems and tables on the sum of the divisors of a number," Quart. J. Math., v. 44. 1913, pp. 264296.
 [11]
P.
Erdös, On amicable numbers, Publ. Math. Debrecen
4 (1955), 108–111. MR 0069198
(16,998h)
 [1]
 E. B. Escort, "Amicable numbers," Scripta Math., v. 12. 1946. pp. 6172. MR 8, 135. MR 0017293 (8:135a)
 [2]
 P. Poulet, "43 new couples of amicable numbers," Scripta Math., v. 14. 1948. p. 77.
 [3]
 M. García. "New amicable pairs," Scripta Math., v. 23. 1957, pp. 167171. MR 20 #5158. MR 0098703 (20:5158)
 [4]
 E. J. Lee. "Amicable numbers and the bilinear diophantine equation." Math. Comp., v. 22, 1968. pp. 181187. MR 37 #142. MR 0224543 (37:142)
 [5]
 E. J. Lee, "The discovery of amicable numbers," J. Recreational Math. (To appear.)
 [6]
 J. Alanen, O. Ore, & J. Stemple, "Systematic computations on amicable numbers," Math. Comp., v. 21, 1967, pp. 242245. MR 36 #5058. MR 0222006 (36:5058)
 [7]
 P. Bratley & J. McKay, "More amicable numbers," Math. Comp., v. 22, 1968, pp. 677678. MR 37 #1299. MR 0225706 (37:1299)
 [8]
 P. Poulet, L'intermédiaire des math., v. 25, 1918, pp. 100101.
 [9]
 G. A. Paxson, Annapolis Meeting of the Mathematical Association of America, May 5th 1956.
 [10]
 L. E. Dickson, "Theorems and tables on the sum of the divisors of a number," Quart. J. Math., v. 44. 1913, pp. 264296.
 [11]
 P. Erdös, "On amicable numbers," Publ. Math. Debrecen, v. 4, 1955, pp. 108111. MR 16, 998. MR 0069198 (16:998h)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10.03
Retrieve articles in all journals
with MSC:
10.03
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197002710046
PII:
S 00255718(1970)02710046
Keywords:
Amicable numbers,
sociable numbers,
aliquot series
Article copyright:
© Copyright 1970
American Mathematical Society
