Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Tables of reductions of symmetrized inner products (``inner plethysms'') of ordinary irreducible representations of symmetric groups

Author: N. Esper
Journal: Math. Comp. 29 (1975), 1150-1151
MSC: Primary 20C30
MathSciNet review: 0387398
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Decompositions of symmetrized inner products $ [\alpha ] \boxdot [\beta ]$ of ordinary irreducible representations $ [\alpha ]$ of symmetric groups $ {S_n}$ and $ [\beta ]$ of $ {S_m}$ were evaluated on a CDC 6400. Tables were obtained for $ 2 \leqslant n \leqslant 10$ and $ 2 \leqslant m \leqslant 5$ as well as for $ m = 6$ and $ 2 \leqslant n \leqslant 7$.

References [Enhancements On Off] (What's this?)

  • [1] N. ESPER, Ein interaktives Programmsystem zur Erzeugung der rationalisierten Charakterentafel einer endlichen Gruppe, Staatsexamensarbeit, Aachen, 1974. (To appear.)
  • [2] A. KERBER, "Symmetrization of representations," Proc. Second Internat. Colloq. Group Theoretical Methods in Physics, Nijmegen, June 1973.
  • [3] R. C. King, Branching rules for 𝐺𝐿(𝑁)⊃_{𝑚} and the evaluation of inner plethysms, J. Mathematical Phys. 15 (1974), 258–267. MR 0331999,
  • [4] G. Ja. LJUBARSKIĬ, Group Theory and Its Applications to Physics, GITTL, Moscow, 1957; English transl., Pergamon Press, New York, 1960. MR 21 #5441; 22 #7709.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 20C30

Retrieve articles in all journals with MSC: 20C30

Additional Information

Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society