Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On maximal finite irreducible subgroups of $ {\rm GL}(n, {\bf Z})$. I. The five and seven dimensional cases


Authors: Wilhelm Plesken and Michael Pohst
Journal: Math. Comp. 31 (1977), 536-551
MSC: Primary 20G05
DOI: https://doi.org/10.1090/S0025-5718-1977-0444789-X
MathSciNet review: 0444789
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: General methods for the determination of maximal finite absolutely irreducible subgroups of $ GL(n,{\mathbf{Z}})$ are described. For $ n = 5,7$ all these groups are computed up to Z-equivalence.


References [Enhancements On Off] (What's this?)

  • [1] R. BÜLOW, Über Dadegruppen in $ GL(5,{\mathbf{Z}})$, Dissertation, Aachen, 1973.
  • [2] R. BÜLOW, J. NEUBÜSER & H. WONDRATSCHEK, "On crystallography in higher dimensions. I, II, III," Acta Cryst., v. A27, 1971, pp. 517-535.
  • [3] R. BRAUER, "Über endliche lineare Gruppen von Primzahlgrad," Math. Ann., v. 169, 1967, pp. 73-96. MR 34 #5913. MR 0206088 (34:5913)
  • [4] R. BRAUER & C. NESBITT, "On modular characters of groups," Ann. of Math. (2), v. 42, 1941, pp. 556-590. MR 2, 309. MR 0004042 (2:309c)
  • [5] W. C. CURTIS & I. REINER, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York and London, 1962. MR 26 #2519. MR 0144979 (26:2519)
  • [6] E. C. DADE, "The maximal finite groups of $ 4 \times 4$ integral matrices," Illinois J. Math., v. 9, 1965, pp. 99-122. MR 30 #1192. MR 0170958 (30:1192)
  • [7] V. ENNOLA, "On the characters of the finite unitary groups," Ann. Acad. Sci. Fenn. Ser. AI, No, 323, Helsinki, 1963. MR 28 #143. MR 0156900 (28:143)
  • [8] J. E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Math., vol. 9, Springer-Verlag, Berlin and New York, 1972. MR 48 #2197. MR 0323842 (48:2197)
  • [9] H. MINKOWSKI, "Zur Theorie der positiven quadratischen Formen," Gesammelte Werke, Band 1, Chelsea, New York, 1958, pp. 212-218.
  • [10] W. PLESKEN, Beiträge zur Bestimmung der endlichen irreduziblen Untergruppen von $ GL(n,{\mathbf{Z}})$ und ihrer ganzzahligen Darstellungen, Dissertation, Aachen, 1974.
  • [11] S. S. RYšSKOV, "On maximal finite groups of integer $ (n \times n)$-matrices," Dokl. Akad. Nauk SSSR, v. 204, 1972, pp. 561-564 = Soviet Math. Dokl., v. 13, 1972, pp. 720-724. MR 46 #3636. MR 0304501 (46:3636)
  • [12] S. S. RYŠKOV, "Maximal finite groups of integral $ (n \times n)$ matrices and full groups of integral automorphisms of positive quadratic forms (Bravais models)," Trudy Mat. Inst. Steklov., v. 128, 1972, pp. 183-211, 261 = Proc. Steklov Inst. Math., v. 128, 1972, pp. 217-250. MR 49 #8939. MR 0344199 (49:8939)
  • [13] D. B. WALES, "Finite linear groups in seven variables," Bull. Amer. Math. Soc., v. 74, 1968, pp. 197-198. MR 36 #1552. MR 0218466 (36:1552)
  • [14] H. ZASSENHAUS, "Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen," Abh. Math. Sem. Univ. Hamburg, v. 12, 1938, pp. 276-288.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 20G05

Retrieve articles in all journals with MSC: 20G05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0444789-X
Keywords: Integral matrix groups
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society