The comparison of numerical methods for solving polynomial equations

Author:
Aurél Galántai

Journal:
Math. Comp. **32** (1978), 391-397

MSC:
Primary 65H05; Secondary 65E05

DOI:
https://doi.org/10.1090/S0025-5718-1978-0488698-X

MathSciNet review:
0488698

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we compare the Turán process [5]-[6] with the Lehmer-Schur method [2]. We prove that the latter is better.

**[1]**G. COLLINS, "Computer algebra of polynomials and rational functions,"*Amer. Math. Monthly*, v. 80, 1973, pp. 725-755. MR**0323750 (48:2106)****[2]**D. H. LEHMER, "A machine method for solving polynomial equations,"*J. Assoc. Comput. Mach.*, v. 8, 1961, pp. 151-163.**[3]**A. RALSTON,*A First Course in Numerical Analysis*, McGraw-Hill, New York, 1965. MR**0191070 (32:8479)****[4]**F. SZIDAROVSZKY,*Introduction to Numerical Methods*(in Hungarian), Közgazdásági és Jogi Könyvkiadó, Budapest, 1974.**[5]**P. TURÁN, "On the numerical solution of algebraic equations" (in Hungarian), MTA III,*Osztály Közleményei*, v. 18, 1968, pp. 223-235.**[6]**P. TURÁN, "Power sum method and the approximative solution of algebraic equations,"*Math. Comp.*, v. 29, 1975, pp. 311-318. MR**0368413 (51:4654)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65H05,
65E05

Retrieve articles in all journals with MSC: 65H05, 65E05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0488698-X

Article copyright:
© Copyright 1978
American Mathematical Society