Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The exact degree of precision of generalized Gauss-Kronrod integration rules


Author: Philip Rabinowitz
Journal: Math. Comp. 35 (1980), 1275-1283
MSC: Primary 65D30
DOI: https://doi.org/10.1090/S0025-5718-1980-0583504-6
MathSciNet review: 583504
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the Kronrod extension to the n-point Gauss integration rule, with respect to the weight function $ {(1 - {x^2})^{\mu - {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}$, $ 0 < \mu \leqslant 2$, $ \mu \ne 1$, is of exact precision $ 3n + 1$ for n even and $ 3n + 2$ for n odd. Similarly, for the $ (n + 1)$-point Lobatto rule, with $ - {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} < \mu \leqslant 1$, $ \mu \ne 0$, the exact precision is 3n for n odd and $ 3n + 1$ for n even.


References [Enhancements On Off] (What's this?)

  • [1] P. BARATELLA, "Un'estensione ottimale della formula di quadratura di Radau," Rend. Sem. Mat. Univ. Politec. Torino, v. 37, 1979, pp. 147-158. MR 547779 (80h:65012)
  • [2] P. BARRUCAND, "Intégration numérique, abscisse de Kronrod-Patterson et polynômes de Szegö," C. R. Acad. Sci. Paris Sèr. A, v. 270, 1970, pp. 336-338. MR 0267755 (42:2657)
  • [3] P. J. DAVIS & P. RAB1NOWITZ, Methods of Numerical Integration, Academic Press, New York, 1975. MR 0448814 (56:7119)
  • [4] A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER & F. G. TRICOMI, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953.
  • [5] D. K. KAHANER & G. MONEGATO, "Nonexistence of extented Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights," Z. Angew. Math. Phys., v. 29, 1978, pp. 983-986. MR 523866 (80d:65034)
  • [6] T. KALUZA, "Über die Koeffizienten reziproker Potenzreihen," Math. Z., v. 28, 1928, pp. 161-170. MR 1544949
  • [7] A. S. KRONROD, Nodes and Weights for Quadrature Formulae. Sixteen Place Tables, "Nauka", Moscow, 1964; English transl., Consultants Bureau, New York, 1965. MR 0183116 (32:598)
  • [8] C. A. MICCHELLI & T. J. RIVL1N, "Turán formulae, and highest precision quadrature rules for Chebyshev coefficients," IBM J. Res. Develop., v. 16, 1972, pp. 372-379. MR 0334465 (48:12784)
  • [9] G. MONEGATO, "A note on extended Gaussian quadrature rules," Math. Comp., v. 30, 1976, pp. 812-817. MR 0440878 (55:13746)
  • [10] G. MONEGATO, "Positivity of the weights of extended Gauss-Legendre quadrature rules," Math. Comp., v. 32, 1978, pp. 243-245. MR 0458809 (56:17009)
  • [11] G. MONEGATO, "Some remarks on the construction of extended Gaussian quadrature rules," Math. Comp., v. 32, 1978, pp. 247-252. MR 0458810 (56:17010)
  • [12] G. MONEGATO, "An overview of results and questions related to Kronrod schemes," in Numerische Integration (G. Hämmerlin, Ed.), ISNM 45, Birkhäuser Verlag, Basel, 1979, pp. 231-240. MR 561296 (81m:65033)
  • [13] T. N. L. PATTERSON, "The optimum addition of points to quadrature formulae," Math. Comp., v. 22, 1967, pp. 847-856. MR 0242370 (39:3701)
  • [14] R. PIESSENS & M. BRANDERS, "A note on the optimal addition of abscissas to quadrature formulas of Gauss and Lobatto type," Math. Comp., v. 28, 1974, pp. 135-139. MR 0343552 (49:8293)
  • [15] JU. S. RAMSKIÏ, "The improvement of a certain quadrature formula of Gauss type," Vyčisl. Prikl. Mat. (Kiev), v. 22, 1974, pp. 143-146. (Russian) MR 0353638 (50:6121)
  • [16] G. SZEGÖ, "Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören," Math. Ann., v. 110, 1934, pp. 501-513. MR 1512952
  • [17] G. SZEGÖ, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1975;reprinted 1978.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D30

Retrieve articles in all journals with MSC: 65D30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1980-0583504-6
Keywords: Kronrod rule, Gauss integration rule, Lobatto integration rule, Gegenbauer polynomials, Szegö polynomials, Fourier coefficients
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society