Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)


The exact degree of precision of generalized Gauss-Kronrod integration rules

Author: Philip Rabinowitz
Journal: Math. Comp. 35 (1980), 1275-1283
MSC: Primary 65D30
MathSciNet review: 583504
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the Kronrod extension to the n-point Gauss integration rule, with respect to the weight function $ {(1 - {x^2})^{\mu - {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}$, $ 0 < \mu \leqslant 2$, $ \mu \ne 1$, is of exact precision $ 3n + 1$ for n even and $ 3n + 2$ for n odd. Similarly, for the $ (n + 1)$-point Lobatto rule, with $ - {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} < \mu \leqslant 1$, $ \mu \ne 0$, the exact precision is 3n for n odd and $ 3n + 1$ for n even.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D30

Retrieve articles in all journals with MSC: 65D30

Additional Information

PII: S 0025-5718(1980)0583504-6
Keywords: Kronrod rule, Gauss integration rule, Lobatto integration rule, Gegenbauer polynomials, Szegö polynomials, Fourier coefficients
Article copyright: © Copyright 1980 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia