A note on the Diophantine equation

Author:
J. W. S. Cassels

Journal:
Math. Comp. **44** (1985), 265-266

MSC:
Primary 11D25

DOI:
https://doi.org/10.1090/S0025-5718-1985-0771049-4

MathSciNet review:
771049

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Any integral solution of the title equation has (9).

**[1]**G. Eisenstein, "Nachtrag zum cubischen Reciprocitätssatze...."*J. Reine Angew. Math.*, v. 28, 1844, pp. 28-35.**[2]**L. J. Mordell, "Integer solutions of ,"*J. London Math. Soc.*, v. 28, 1953, pp. 500-510. MR**0056619 (15:102b)****[3]**M. Scarowsky & A. Boyarsky, "A note on the Diophantine equation ,"*Math. Comp.*, v. 42, 1984, pp. 235-236. MR**726000 (85c:11029)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11D25

Retrieve articles in all journals with MSC: 11D25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0771049-4

Article copyright:
© Copyright 1985
American Mathematical Society