Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A note on the Diophantine equation $ x\sp 3+y\sp 3+z\sp 3=3$


Author: J. W. S. Cassels
Journal: Math. Comp. 44 (1985), 265-266
MSC: Primary 11D25
DOI: https://doi.org/10.1090/S0025-5718-1985-0771049-4
MathSciNet review: 771049
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Any integral solution of the title equation has $ x \equiv y \equiv z$ (9).


References [Enhancements On Off] (What's this?)

  • [1] G. Eisenstein, "Nachtrag zum cubischen Reciprocitätssatze...." J. Reine Angew. Math., v. 28, 1844, pp. 28-35.
  • [2] L. J. Mordell, "Integer solutions of $ {x^2} + {y^2} + {z^2} + 2xyz = n$," J. London Math. Soc., v. 28, 1953, pp. 500-510. MR 0056619 (15:102b)
  • [3] M. Scarowsky & A. Boyarsky, "A note on the Diophantine equation $ {x^n} + {y^n} + {z^n} = 3$," Math. Comp., v. 42, 1984, pp. 235-236. MR 726000 (85c:11029)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11D25

Retrieve articles in all journals with MSC: 11D25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1985-0771049-4
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society