Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Quasi-optimal estimates for finite element approximations using Orlicz norms


Author: Ricardo G. Durán
Journal: Math. Comp. 49 (1987), 17-23
MSC: Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1987-0890251-6
MathSciNet review: 890251
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the approximation by linear finite elements of the solution of the Dirichlet problem $ - \Delta u = f$. We obtain a relation between the error in the infinite norm and the error in some Orlicz spaces. As a consequence, we get quasi-optimal uniform estimates when u has second derivatives in the Orlicz space associated with the exponential function. This estimate contains, in particular, the case where f belongs to $ {L^\infty }$ and the boundary of the domain is regular. We also show that optimal order estimates are valid for the error in this Orlicz space provided that u be regular enough.


References [Enhancements On Off] (What's this?)

  • [1] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [2] T. K. Donaldson & N. S. Trudinger, "Orlicz-Sobolev spaces and imbedding theorems," J. Funct. Anal., v. 8, 1971, pp. 52-75. MR 0301500 (46:658)
  • [3] D. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin and New York, 1983. MR 737190 (86c:35035)
  • [4] R. Haverkamp, "Eine Aussage zur $ {L^\infty }$-Stabilität und zur genauen Konvergenzordnung der $ H_0^1$-Projektionen," preprint 508, Sonderforschungsbereich 72, Approximation und Optimierung, Universität Bonn, 1983.
  • [5] F. John & L. Nirenberg, "On functions of bounded mean oscillation," Comm. Pure Appl. Math., v. 14, 1961, pp. 415-426. MR 0131498 (24:A1348)
  • [6] J. Peetre, "On convolution operators leaving $ {L^{p,\lambda }}$ invariant," Ann. Mat. Pura Appl., v. 72, 1966, pp. 295-304. MR 0209917 (35:812)
  • [7] R. Rannacher, "Zur $ {L^\infty }$-Konvergenz linearer finiter Elemente beim Dirichlet-Problem," Math. Z., v. 149, 1976, pp. 69-77. MR 0488859 (58:8361)
  • [8] R. Rannacher & R. Scott, "Some optimal error estimates for piecewise linear finite element approximations," Math. Comp., v. 38, 1982, pp. 437-445. MR 645661 (83e:65180)
  • [9] A. H. Schatz & L. B. Wahlbin, "On the quasi-optimality in $ {L_\infty }$ of the $ \dot{H}^1$-projection into finite element spaces," Math. Comp., v. 38, 1982, pp. 1-22. MR 637283 (82m:65106)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1987-0890251-6
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society