An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates

Author:
Helmut Gfrerer

Journal:
Math. Comp. **49** (1987), 507-522, S5

MSC:
Primary 65J10; Secondary 47A50

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906185-4

MathSciNet review:
906185

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose an a posteriori parameter choice for ordinary and iterated Tikhonov regularization that leads to optimal rates of convergence towards the best approximate solution of an ill-posed linear operator equation in the presence of noisy data. Numerical examples are given.

**[1]**R. Arcangeli, "Pseudo-solution de l'équation ,"*C. R. Acad. Sci. Paris Sér. A*, v. 263, 1966, pp. 282-285. MR**0203457 (34:3308)****[2]**R. Courant & D. Hilbert,*Methoden der Mathematischen Physik I*, Springer, Berlin, 1968. MR**0344038 (49:8778)****[3]**H. W. Engl, "Necessary and sufficient conditions for convergence of regularization methods for solving linear operator equations of the first kind,"*Numer. Funct. Anal. Optim.*, v. 3, 1981, pp. 201-222. MR**627122 (82j:47018)****[4]**H. W. Engl, "Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates,"*J. Optim. Theory Appl.*, v. 52, 1987, pp. 209-215. MR**879198 (88b:49045)****[5]**H. W. Engl, "On the choice of the regularization parameter for iterated Tikhonov-regularization of ill-posed problems,"*J. Approx. Theory*, v. 49, 1987, pp. 55-63. MR**870549 (88b:65069)****[6]**H. W. Engl & A. Neubauer, "A variant of Marti's method for solving ill-posed linear integral equations that leads to optimal convergence rates,"*Math. Comp.*, v. 45, 1985, pp. 405-416. MR**804932 (86j:65177)****[7]**G. H. Golub & C. F. Van Loan,*Matrix Computations*, The Johns Hopkins University Press, Baltimore, MD, 1983. MR**733103 (85h:65063)****[8]**C. W. Groetsch,*Elements of Applicable Functional Analysis*, Marcel Dekker, New York, 1980. MR**569746 (83m:46103)****[9]**C. W. Groetsch, J. T. King & D. Murio, "Asymptotic analysis of a finite element method for Fredholm equations of the first kind," in*Treatment of Integral Equations by Numerical Methods*(C. T. H. Baker and G. F. Miller, eds.), Academic Press, London, 1982. MR**755337 (85k:65107)****[10]**C. W. Groetsch, "Comments on Morozov's discrepancy principle," in*Improperly Posed Problems and Their Numerical Treatment*(G. Hämmerlin and K. H. Hoffmann, eds.), Birkhäuser, Basel, 1983.**[11]**C. W. Groetsch, "On the asymptotic order of accuracy of Tikhonov regularization,"*J. Optim. Theory Appl.*, v. 41, 1983, pp. 293-298. MR**720775 (85g:65073)****[12]**C. W. Groetsch,*The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind*, Pitman, Boston, 1984. MR**742928 (85k:45020)****[13]**C. W. Groetsch & E. Schock, "Asymptotic convergence rate of Arcangeli's method for ill-posed problems,"*Applicable Anal.*, v. 18, 1984, pp. 175-182. MR**767499 (86c:47010)****[14]**J. T. King & D. Chillingworth, "Approximation of generalized inverses by iterated regularization,"*Numer. Funct. Anal. Optim.*, v. 2, 1979, pp. 449-513. MR**546129 (80m:47009)****[15]**J. T. Marti, "An algorithm for computing minimum norm solutions of Fredhom integral equations of the first kind,"*SIAM J. Numer. Anal.*, v. 15, 1978, pp. 1071-1076. MR**512683 (80b:65154)****[16]**A. Morozov, "On the solution of functional equations by the method of regularization,"*Soviet Math. Dokl.*, v. 7, 1966, pp. 414-417. MR**0208819 (34:8628)****[17]**M. Z. Nashed (Editor),*Generalized Inverses and Applications*, Academic Press, New York, 1976.**[18]**E. Schock, "Approximate solution of ill-posed equations: arbitrarily slow convergence vs. superconvergence," in*Improperly Posed Problems and Their Numerical Treatment*(G. Hämmerlin and K. H. Hofmann, eds.), Birkhäuser, Basel, 1983.**[19]**E. Schock, "On the asymptotic order of accuracy of Tikhonov regularization,"*J. Optim. Theory Appl.*, v. 44, 1984, pp. 95-104. MR**764866 (86c:47012)****[20]**E. Schock, "Parameter choice by discrepancy principles for the Tikhonov regularization of ill-posed problems,"*Integral Equations Operator Theory*, v. 7, 1984, pp. 895-898. MR**774730 (86m:65165)****[21]**T. I. Seidman, "Nonconvergence results for the application of least-squares estimation to ill-posed problems,"*J. Optim. Theory Appl.*, v. 30, 1980, pp. 535-547. MR**572154 (81g:65073)****[22]**J. Stoer & R. Bulirsch,*Introduction to Numerical Analysis*, Springer, New York, 1980. MR**557543 (83d:65002)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65J10,
47A50

Retrieve articles in all journals with MSC: 65J10, 47A50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906185-4

Article copyright:
© Copyright 1987
American Mathematical Society