An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates

Author:
Helmut Gfrerer

Journal:
Math. Comp. **49** (1987), 507-522, S5

MSC:
Primary 65J10; Secondary 47A50

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906185-4

MathSciNet review:
906185

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose an a posteriori parameter choice for ordinary and iterated Tikhonov regularization that leads to optimal rates of convergence towards the best approximate solution of an ill-posed linear operator equation in the presence of noisy data. Numerical examples are given.

**[1]**Rémy Arcangeli,*Pseudo-solution de l’équation 𝐴𝑥=𝑦*, C. R. Acad. Sci. Paris Sér. A-B**263**(1966), A282–A285 (French). MR**0203457****[2]**R. Courant and D. Hilbert,*Methoden der mathematischen Physik. I*, Springer-Verlag, Berlin-New York, 1968 (German). Dritte Auflage; Heidelberger Taschenbücher, Band 30. MR**0344038****[3]**Heinz W. Engl,*Necessary and sufficient conditions for convergence of regularization methods for solving linear operator equations of the first kind*, Numer. Funct. Anal. Optim.**3**(1981), no. 2, 201–222. MR**627122**, https://doi.org/10.1080/01630568108816087**[4]**H. W. Engl,*Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates*, J. Optim. Theory Appl.**52**(1987), no. 2, 209–215. MR**879198**, https://doi.org/10.1007/BF00941281**[5]**Heinz W. Engl,*On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems*, J. Approx. Theory**49**(1987), no. 1, 55–63. MR**870549**, https://doi.org/10.1016/0021-9045(87)90113-4**[6]**Heinz W. Engl and Andreas Neubauer,*An improved version of Marti’s method for solving ill-posed linear integral equations*, Math. Comp.**45**(1985), no. 172, 405–416. MR**804932**, https://doi.org/10.1090/S0025-5718-1985-0804932-1**[7]**Gene H. Golub and Charles F. Van Loan,*Matrix computations*, Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1983. MR**733103****[8]**Charles W. Groetsch,*Elements of applicable functional analysis*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 55, Marcel Dekker, Inc., New York, 1980. MR**569746****[9]**C. W. Groetsch, J. T. King, and D. Murio,*Asymptotic analysis of a finite element method for Fredholm equations of the first kind*, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 1–11. MR**755337****[10]**C. W. Groetsch, "Comments on Morozov's discrepancy principle," in*Improperly Posed Problems and Their Numerical Treatment*(G. Hämmerlin and K. H. Hoffmann, eds.), Birkhäuser, Basel, 1983.**[11]**C. W. Groetsch,*On the asymptotic order of accuracy of Tikhonov regularization*, J. Optim. Theory Appl.**41**(1983), no. 2, 293–298. MR**720775**, https://doi.org/10.1007/BF00935225**[12]**C. W. Groetsch,*The theory of Tikhonov regularization for Fredholm equations of the first kind*, Research Notes in Mathematics, vol. 105, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR**742928****[13]**Charles W. Groetsch and Eberhard Schock,*Asymptotic convergence rate of Arcangeli’s method for ill-posed problems*, Applicable Anal.**18**(1984), no. 3, 175–182. MR**767499**, https://doi.org/10.1080/00036818408839519**[14]**J. Thomas King and David Chillingworth,*Approximation of generalized inverses by iterated regularization*, Numer. Funct. Anal. Optim.**1**(1979), no. 5, 499–513. MR**546129**, https://doi.org/10.1080/01630567908816031**[15]**J. T. Marti,*An algorithm for computing minimum norm solutions of Fredholm integral equations of the first kind*, SIAM J. Numer. Anal.**15**(1978), no. 6, 1071–1076. MR**512683**, https://doi.org/10.1137/0715071**[16]**V. A. Morozov,*On the solution of functional equations by the method of regularization*, Soviet Math. Dokl.**7**(1966), 414–417. MR**0208819****[17]**M. Z. Nashed (Editor),*Generalized Inverses and Applications*, Academic Press, New York, 1976.**[18]**E. Schock, "Approximate solution of ill-posed equations: arbitrarily slow convergence vs. superconvergence," in*Improperly Posed Problems and Their Numerical Treatment*(G. Hämmerlin and K. H. Hofmann, eds.), Birkhäuser, Basel, 1983.**[19]**E. Schock,*On the asymptotic order of accuracy of Tikhonov regularization*, J. Optim. Theory Appl.**44**(1984), no. 1, 95–104. MR**764866**, https://doi.org/10.1007/BF00934896**[20]**Eberhard Schock,*Parameter choice by discrepancy principles for the approximate solution of ill-posed problems*, Integral Equations Operator Theory**7**(1984), no. 6, 895–898. MR**774730**, https://doi.org/10.1007/BF01195873**[21]**T. I. Seidman,*Nonconvergence results for the application of least-squares estimation to ill-posed problems*, J. Optim. Theory Appl.**30**(1980), no. 4, 535–547. MR**572154**, https://doi.org/10.1007/BF01686719**[22]**J. Stoer and R. Bulirsch,*Introduction to numerical analysis*, Springer-Verlag, New York-Heidelberg, 1980. Translated from the German by R. Bartels, W. Gautschi and C. Witzgall. MR**557543**

Retrieve articles in *Mathematics of Computation*
with MSC:
65J10,
47A50

Retrieve articles in all journals with MSC: 65J10, 47A50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906185-4

Article copyright:
© Copyright 1987
American Mathematical Society