A table of elliptic integrals of the second kind

Author:
B. C. Carlson

Journal:
Math. Comp. **49** (1987), 595-606, S13

MSC:
Primary 65A05; Secondary 33A25, 65V05

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906192-1

MathSciNet review:
906192

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By evaluating elliptic integrals in terms of standard *R*-functions instead of Legendre's integrals, many (in one case 144) formulas in previous tables are unified. The present table includes only integrals of the first and second kinds having integrands with real singular points. The 216 integrals of this type listed in Gradshteyn and Ryzhik's table constitute a small fraction of the special cases of 13 integrals evaluated here. The interval of integration is not required, as it is in previous tables, to begin or end at a singular point of the integrand. Fortran codes for the standard *R*-functions are included in a Supplement.

**[1]**Paul F. Byrd and Morris D. Friedman,*Handbook of elliptic integrals for engineers and scientists*, Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York-Heidelberg, 1971. Second edition, revised. MR**0277773****[2]**Billie Chandler Carlson,*Special functions of applied mathematics*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. MR**0590943****[3]**B. C. Carlson,*Elliptic integrals of the first kind*, SIAM J. Math. Anal.**8**(1977), no. 2, 231–242. MR**0430341**, https://doi.org/10.1137/0508016**[4]**B. C. Carlson,*Short proofs of three theorems on elliptic integrals*, SIAM J. Math. Anal.**9**(1978), no. 3, 524–528. MR**0473247**, https://doi.org/10.1137/0509033**[5]**B. C. Carlson,*Computing elliptic integrals by duplication*, Numer. Math.**33**(1979), no. 1, 1–16. MR**545738**, https://doi.org/10.1007/BF01396491**[6]**B. C. Carlson & Elaine M. Notis, "ALGORITHM 577, Algorithms for incomplete elliptic integrals,"*ACM Trans. Math. Software*, v. 7, 1981, pp. 398-403.**[7]**I. S. Gradshteyn & I. M. Ryzhik,*Table of Integrals, Series, and Products*, Academic Press, New York, 1980.**[8]**D. H. Lehmer, "The lemniscate constant,"*Math. Comp.*, v. 3, 1948/49, pp. 550-551.**[9]**A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,*Integrals and series. Vol. 1*, Gordon & Breach Science Publishers, New York, 1986. Elementary functions; Translated from the Russian and with a preface by N. M. Queen. MR**874986****[10]**John Todd,*The lemniscate constants*, Comm. ACM**18**(1975), 14–19; corrigendum, ibid. 18 (1975), no. 8, 462. Collection of articles honoring Alston S. Householder. MR**0375745**, https://doi.org/10.1145/360569.360580**[11]**D. G. Zill and B. C. Carlson,*Symmetric elliptic integrals of the third kind*, Math. Comp.**24**(1970), 199–214. MR**0262553**, https://doi.org/10.1090/S0025-5718-1970-0262553-5

Retrieve articles in *Mathematics of Computation*
with MSC:
65A05,
33A25,
65V05

Retrieve articles in all journals with MSC: 65A05, 33A25, 65V05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906192-1

Article copyright:
© Copyright 1987
American Mathematical Society