Some computational results on a problem concerning powerful numbers

Authors:
A. J. Stephens and H. C. Williams

Journal:
Math. Comp. **50** (1988), 619-632

MSC:
Primary 11R11; Secondary 11A51, 11R27, 11Y16, 11Y40

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929558-3

MathSciNet review:
929558

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *D* be a positive square-free integer and let be the fundamental unit in the order with **Z**-basis . An algorithm, which is of time complexity for any positive , is developed for determining whether or not . Results are presented for a computer run of this algorithm on all . The conjecture of Ankeny, Artin and Chowla is verified for all primes less than .

**[1]**N. C. Ankeny, E. Artin & S. Chowla, "The class number of real quadratic number fields,"*Ann. of Math.*, v. 56, 1952, pp. 479-493. MR**0049948 (14:251h)****[2]**B. D. Beach, H. C. Williams & C. R. Zarnke,*Some Computer Results on Units in Quadratic and Cubic Fields*, Proc. 25th Summer Meeting Canad. Math. Congr., Lakehead Univ., 1971, pp. 609-648. MR**0337887 (49:2656)****[3]**G. Chrystal,*Textbook of Algebra*, part 2, 2nd ed., Dover reprint, New York, 1969, pp. 423-490.**[4]**P. Erdős, "Consecutive numbers,"*Eureka*38, 1975/76, pp. 3-8.**[5]**A. Granville, "Powerful numbers and Fermat's Last Theorem,"*C. R. Math. Rep. Acad. Sci. Canada*, v. 8, 1986, pp. 215-218. MR**841645 (87h:11010)****[6]**H. W. Lenstra, Jr.,*On the Calculation of Regulators and Class Numbers of Quadratic Fields*, London Math. Soc. Lecture Note Series, vol. 56, 1982, pp. 123-150. MR**697260 (86g:11080)****[7]**R. A. Mollin & P. G. Walsh, "A note on powerful numbers, quadratic fields, and the Pellian,"*C. R. Math. Rep. Acad. Sci. Canada*, v. 8, 1986, pp. 109-111. MR**831787 (87g:11020)****[8]**L. J. Mordell, "On a Pellian equation conjecture,"*Acta Arith.*, v. 6, 1960, pp. 137-144. MR**0118699 (22:9470)****[9]**Oskar Perron,*Die Lehre von den Kettenbrüchen*, 2nd ed., Chelsea, New York, 1950. MR**0037384 (12:254b)****[10]**R. J. Schoof, "Quadratic fields and factorization,"*Computational Methods in Number Theory*(H. W. Lenstra, Jr. and R. Tijdemann, eds.), Math. Centrum Tracts, Number 155, Part II, Amsterdam, 1983, pp. 235-286. MR**702519 (85g:11118b)****[11]**D. Shanks,*Class Number, A Theory of Factorization and Genera*, Proc. Sympos. Pure Math., vol. 20 (1969 Institute on Number Theory), Amer. Math. Soc., Providence, R. I., 1971, pp. 415-440. MR**0316385 (47:4932)****[12]**D. Shanks,*The Infrastructure of a Real Quadratic Field and Its Applications*, Proc. 1972 Number Theory Conference, Boulder, 1972, pp. 217-224. MR**0389842 (52:10672)****[13]**R. Soleng, "A computer investigation of units in quadratic number fields," unpublished manuscript.**[14]**H. C. Williams, "A numerical investigation into the length of the period of the continued fraction expansion of ,"*Math. Comp.*, v. 34, 1981, pp. 593-601. MR**606518 (82f:10011)****[15]**H. C. Williams & M. C. Wunderlich, "On the parallel generation of the residues for the continued fraction factoring algorithm,"*Math. Comp.*, v. 48, 1987, pp. 405-423. MR**866124 (88i:11099)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11R11,
11A51,
11R27,
11Y16,
11Y40

Retrieve articles in all journals with MSC: 11R11, 11A51, 11R27, 11Y16, 11Y40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929558-3

Article copyright:
© Copyright 1988
American Mathematical Society