Linear elliptic difference inequalities with random coefficients

Authors:
Hung Ju Kuo and Neil S. Trudinger

Journal:
Math. Comp. **55** (1990), 37-53

MSC:
Primary 65N05; Secondary 35R60, 39A12

MathSciNet review:
1023049

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove various pointwise estimates for solutions of linear elliptic difference inequalities with random coefficients. These estimates include discrete versions of the maximum principle of Aleksandrov and Harnack inequalities and Hölder estimates of Krylov and Safonov for elliptic differential operators with bounded coefficients.

**[1]**A. D. Aleksandrov,*Uniqueness conditions and bounds for the solution of the Dirichlet problem*, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom.**18**(1963), no. 3, 5–29 (Russian, with English summary). MR**0164135****[2]**I. Ja. Bakel′man,*On the theory of quasilinear elliptic equations*, Sibirsk. Mat. Ž.**2**(1961), 179–186 (Russian). MR**0126604****[3]**J. H. Bramble, B. E. Hubbard, and Vidar Thomée,*Convergence estimates for essentially positive type discrete Dirichlet problems*, Math. Comp.**23**(1969), 695–709. MR**0266444**, 10.1090/S0025-5718-1969-0266444-7**[4]**J. H. Bramble, R. B. Kellogg, and V. Thomée,*On the rate of convergence of some difference schemes for second order elliptic equations*, Nordisk Tidskr. Informationsbehandling (BIT)**8**(1968), 154–173. MR**0238497****[5]**A. Brandt,*Interior estimates for second-order elliptic differential (or finite-difference) equations via the maximum principle*, Israel J. Math.**7**(1969), 95–121. MR**0252836****[6]**K. P. Bube and J. C. Strikwerda,*Interior regularity estimates for elliptic systems of difference equations*, SIAM J. Numer. Anal.**20**(1983), no. 4, 653–670. MR**708449**, 10.1137/0720044**[7]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[8]**N. V. Krylov and M. V. Safonov,*A property of the solutions of parabolic equations with measurable coefficients*, Izv. Akad. Nauk SSSR Ser. Mat.**44**(1980), no. 1, 161–175, 239 (Russian). MR**563790****[9]**H. J. Kuo and N. S. Trudinger,*Discrete methods for fully nonlinear elliptic equations*(in preparation).**[10]**A. B. Merkov,*Second-order elliptic equations on graphs*, Mat. Sb. (N.S.)**127(169)**(1985), no. 4, 502–518, 559–560 (Russian). MR**806514****[11]**T. S. Motzkin and W. Wasow,*On the approximation of linear elliptic differential equations by difference equations with positive coefficients*, J. Math. Physics**31**(1953), 253–259. MR**0052895****[12]**Aleksey Vasil′yevich Pogorelov,*The Minkowski multidimensional problem*, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg; Scripta Series in Mathematics. MR**0478079****[13]**Vidar Thomée,*Discrete interior Schauder estimates for elliptic difference operators.*, SIAM J. Numer. Anal.**5**(1968), 626–645. MR**0238505****[14]**Neil S. Trudinger,*Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations*, Invent. Math.**61**(1980), no. 1, 67–79. MR**587334**, 10.1007/BF01389895**[15]**Neil S. Trudinger,*On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations*, Partial differential equations and the calculus of variations, Vol. II, Progr. Nonlinear Differential Equations Appl., vol. 2, Birkhäuser Boston, Boston, MA, 1989, pp. 939–957. MR**1034037**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N05,
35R60,
39A12

Retrieve articles in all journals with MSC: 65N05, 35R60, 39A12

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1990-1023049-9

Article copyright:
© Copyright 1990
American Mathematical Society