Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Linear elliptic difference inequalities with random coefficients


Authors: Hung Ju Kuo and Neil S. Trudinger
Journal: Math. Comp. 55 (1990), 37-53
MSC: Primary 65N05; Secondary 35R60, 39A12
DOI: https://doi.org/10.1090/S0025-5718-1990-1023049-9
MathSciNet review: 1023049
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove various pointwise estimates for solutions of linear elliptic difference inequalities with random coefficients. These estimates include discrete versions of the maximum principle of Aleksandrov and Harnack inequalities and Hölder estimates of Krylov and Safonov for elliptic differential operators with bounded coefficients.


References [Enhancements On Off] (What's this?)

  • [1] A. D. Aleksandrov, Uniqueness conditions and estimates for the solution of the Dirichlet problem, Vestnik Leningrad. Univ. 18 (1963), no. 3, 5-29; English transl., Amer. Math. Soc. Transl. (2) 68 (1968), 89-119. MR 0164135 (29:1434)
  • [2] J. Ya. Bakel'man, Theory of quasilinear elliptic equations, Sibirsk. Mat. Zh. 2 (1961), 179-186. MR 0126604 (23:A3900)
  • [3] J. H. Bramble, B. E. Hubbard, and V. Thomée, Convergence estimates for essentially positive type Dirichlet problems, Math. Comp. 23 (1969), 695-710. MR 0266444 (42:1350)
  • [4] J. H. Bramble, R. B. Kellogg, and V. Thomée, On the rate of convergence of some difference schemes for second order elliptic equations, Nordisk. Tidskr. Informationsbehandling (BIT) 8 (1968), 154-173. MR 0238497 (38:6773)
  • [5] A. Brandt, Interior estimates for second-order elliptic differential (or finite difference equations) via the maximum principle, Israel J. Math. 7 (1969), 95-121. MR 0252836 (40:6052)
  • [6] K. P. Bube and J. C. Strikwerda, Interior regularity estimates for elliptic systems of difference equations, SIAM J. Numer. Anal. 20 (1983), 653-670. MR 708449 (84m:65118)
  • [7] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1983. MR 737190 (86c:35035)
  • [8] N. V. Krylov and M. V. Safonov, Certain properties of solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk. SSSR 40 (1980), 161-175. MR 563790 (83c:35059)
  • [9] H. J. Kuo and N. S. Trudinger, Discrete methods for fully nonlinear elliptic equations (in preparation).
  • [10] A. B. Merkov, Second-order elliptic equations on graphs, Mat. Sb. 127 (1985); English transl., Math. USSR Sb. 55 (1986), 493-509. MR 806514 (87c:35044)
  • [11] T. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Phys. 31 (1953), 253-259. MR 0052895 (14:693i)
  • [12] A. V. Pogorelov, The Minkowski multidimensional problem, Wiley, New York, 1978. MR 0478079 (57:17572)
  • [13] V. Thomée, Discrete interior Schauder estimates for elliptic difference operators, SIAM J. Numer. Anal. 5 (1968), 626-645. MR 0238505 (38:6781)
  • [14] N. S. Trudinger, Local estimates for subsolutions and supersolutions of general second order equations, Invent. Math. 61 (1980), 67-79. MR 587334 (81m:35058)
  • [15] -, On regularity and existence of viscosity solutions of nonlinear second order elliptic equations, Partial Differential Equations and the Calculus of Variations: Essays in Honor of Ennio De Giorgi, Birkhäuser, Boston, 1989, pp. 939-957. MR 1034037 (90m:35041)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N05, 35R60, 39A12

Retrieve articles in all journals with MSC: 65N05, 35R60, 39A12


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1990-1023049-9
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society