Sieved partition functions and -binomial coefficients

Authors:
Frank Garvan and Dennis Stanton

Journal:
Math. Comp. **55** (1990), 299-311

MSC:
Primary 11P68; Secondary 05A19, 05A30, 11B65

DOI:
https://doi.org/10.1090/S0025-5718-1990-1023761-1

MathSciNet review:
1023761

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The *q*-binomial coefficient is a polynomial in *q*. Given an integer *t* and a residue class *r* modulo *t*, a sieved *q*-binomial coefficient is the sum of those terms whose exponents are congruent to *r* modulo *t*. In this paper explicit polynomial identities in are given for sieved *q*-binomial coefficients. As a limiting case, generating functions for the sieved partition function are found as multidimensional theta functions. A striking corollary of this representation is the proof of Ramanujan's congruences , and 11 by exhibiting symmetry groups of orders 5, 7, and 11 of explicit quadratic forms. We also verify the Subbarao conjecture for , , and .

**[1]**G. E. Andrews,*The theory of partitions*, Encyclopedia of Mathematics and Its Applications, Vol. 2 (G.-C. Rota, ed.), Addison-Wesley, Reading, Mass., 1976 (Reissued: Cambridge Univ. Press, London and New York, 1985). MR**0557013 (58:27738)****[2]**G. E. Andrews and F. G. Garvan,*Dyson's crank of a partition*, Bull. Amer. Math. Soc.**18**(1988), 167-171. MR**929094 (89b:11079)****[3]**G. H. Hardy and E. M. Wright,*An introduction to the theory of numbers*, Oxford Univ. Press, London, 1979. MR**568909 (81i:10002)****[4]**M. D. Hirschhorn and M. V. Subbarao,*On the parity of*, preprint.**[5]**O. Kolberg,*Some identities involving the partition function*, Math. Scand.**5**(1957), 77-92. MR**0090608 (19:838e)****[6]**-,*Note on the parity of the partition function*, Math. Scand.**7**(1959), 377-378. MR**0117213 (22:7995)****[7]**M. V. Subbarao,*Some remarks on the partition function*, Amer. Math. Monthly**73**(1966), 851-854. MR**0201409 (34:1293)****[8]**L. Winquist,*Elementary proof of*, J. Combin. Theory**6**(1969), 56-59. MR**0236136 (38:4434)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11P68,
05A19,
05A30,
11B65

Retrieve articles in all journals with MSC: 11P68, 05A19, 05A30, 11B65

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1990-1023761-1

Keywords:
*q*-binomial coefficient,
partitions

Article copyright:
© Copyright 1990
American Mathematical Society