Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Doubly cuspidal cohomology for principal congruence subgroups of $ {\rm GL}(3,{\bf Z})$


Authors: Avner Ash and Mark McConnell
Journal: Math. Comp. 59 (1992), 673-688
MSC: Primary 11F75; Secondary 11F70
DOI: https://doi.org/10.1090/S0025-5718-1992-1134711-3
MathSciNet review: 1134711
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The cohomology of arithmetic groups is made up of two pieces, the cuspidal and noncuspidal parts. Within the cuspidal cohomology is a subspace-- the f-cuspidal cohomology--spanned by the classes that generate representations of the associated finite Lie group which are cuspidal in the sense of finite Lie group theory. Few concrete examples of f-cuspidal cohomology have been computed geometrically, outside the cases of rational rank 1, or where the symmetric space has a Hermitian structure.

This paper presents new computations of the f-cuspidal cohomology of principal congruence subgroups $ \Gamma (p)$ of $ {\text{GL}}(3,\mathbb{Z})$ of prime level p. We show that the f-cuspidal cohomology of $ \Gamma (p)$ vanishes for all $ p \leqslant 19$ with $ p \ne 11$, but that it is nonzero for $ p = 11$. We give a precise description of the f-cuspidal cohomology for $ \Gamma (11)$ in terms of the f-cuspidal representations of the finite Lie group $ {\text{GL}}(3,\mathbb{Z}/11)$.

We obtained the result, ultimately, by proving that a certain large complex matrix M is rank-deficient. Computation with the SVD algorithm gave strong evidence that M was rank-deficient; but to prove it, we mixed ideas from numerical analysis with exact computation in algebraic number fields and finite fields.


References [Enhancements On Off] (What's this?)

  • [1] A. Ash, Cohomology of congruence subgroups of $ {\text{SL}}(n,\mathbb{Z})$, Math. Ann. 249 (1980), 55-73. MR 575448 (82f:22010)
  • [2] -, Nonminimal modular symbols for $ {\text{GL}}(n)$, Invent. Math. 91 (1988), 483-491. MR 928493 (89c:11089)
  • [3] A. Ash, D. Grayson, and P. Green, Computations of cuspidal cohomology of congruence subgroups of $ {\text{SL}}(3,\mathbb{Z})$, J. Number Theory 19 (1984), 412-436. MR 769792 (86g:11032)
  • [4] A. Ash, R. Pinch, and R. Taylor, An $ {A_4}$ extension of $ \mathbb{Q}$ attached to a non-selfdual automorphic form on $ {\text{GL(3)}}$, Math. Ann. 291 (1991), 753-766. MR 1135542 (93c:11031)
  • [5] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic Forms, Representations, and L-functions (Part I), Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, RI, 1979, pp. 189-202. MR 546598 (81m:10055)
  • [6] A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436-491. MR 0387495 (52:8337)
  • [7] K. Brown, Cohomology of groups, Springer-Verlag, New York, 1982. MR 672956 (83k:20002)
  • [8] L. Clozel, Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic Forms, Shimura Varieties and L-functions (L. Clozel and J. S. Milne, eds.), vol. I, Proc. Ann Arbor Conference, Academic Press, 1990, pp. 77-159. MR 1044819 (91k:11042)
  • [9] J. H. Davenport, Y. Siret, and E. Tournier, Computer algebra: Systems and algorithms for algebraic computation, Academic Press, London, 1988. MR 975254 (91j:68061)
  • [10] S. I. Gel'fand, Representations of the full linear group over a finite field, Math. USSR Sb. 12 (1970), 13-39. MR 0272916 (42:7797)
  • [11] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Univ. Press, Baltimore, 1983. MR 733103 (85h:65063)
  • [12] Harish-Chandra, Eisenstein series over finite fields, Collected Papers (V. S. Varadarajan, ed.), vol. IV, Springer-Verlag, New York, 1984, pp. 8-20.
  • [13] A. Helversen-Pasotto, Darstellungen von $ {\text{GL(3,}}{\mathbb{F}_q}{\text{)}}$ und Gaußsche Summen, Math. Ann. 260 (1982), 1-21. MR 664361 (83m:10058)
  • [14] J.-P. Labesse and J. Schwermer, On liftings and cusp cohomology of arithmetic groups, Invent. Math. 83 (1986), 383-401. MR 818358 (87g:11060)
  • [15] R. Langlands, On the notion of an automorphic representation, Automorphic Forms, Representations, and L-functions (Part I), Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, RI, 1979, pp. 203-207. MR 546598 (81m:10055)
  • [16] R. Lee and J. Schwermer, Cohomology of arithmetic subgroups of $ {\text{SL}_3}$ at infinity, J. Reine Angew. Math. 330 (1982), 100-131. MR 641814 (83k:22029)
  • [17] A. J. Silberger, An elementary construction of the representations of $ {\text{SL(2,}}GF(q))$, Osaka J. Math. 6 (1969), 329-338. MR 0291316 (45:410)
  • [18] C. Soulé, The cohomology of $ {\text{SL}}(3,\mathbb{Z})$, Topology 17 (1978), 1-22.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11F75, 11F70

Retrieve articles in all journals with MSC: 11F75, 11F70


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1134711-3
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society