Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On perturbations of matrix pencils with real spectra


Author: Ren Cang Li
Journal: Math. Comp. 62 (1994), 231-265
MSC: Primary 15A22; Secondary 65F15, 65F35
DOI: https://doi.org/10.1090/S0025-5718-1994-1208838-3
MathSciNet review: 1208838
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Perturbation bounds for the generalized eigenvalue problem of a diagonalizable matrix pencil $ A - \lambda B$ with real spectrum are developed. It is shown how the chordal distances between the generalized eigenvalues and the angular distances between the generalized eigenspaces can be bounded in terms of the angular distances between the matrices. The applications of these bounds to the spectral variations of definite pencils are conducted in such a way that extra attention is paid to their peculiarities so as to derive more sophisticated perturbation bounds. Our results for generalized eigenvalues are counterparts of some celebrated theorems for the spectral variations of Hermitian matrices such as the Weyl-Lidskii theorem and the Hoffman-Wielandt theorem; and those for generalized eigenspaces are counterparts of the celebrated Davis-Kahan $ \sin \theta ,\sin 2\theta $ theorems for the eigenspace variations of Hermitian matrices.

The paper consists of two parts. Part I is for generalized eigenvalue perturbations, while Part II deals with generalized eigenspace perturbations.


References [Enhancements On Off] (What's this?)

  • [1] R. Bhatia and Ch. Davis, A bound for the spectral variation of a unitary operator, Linear and Multilinear Algebra 15 (1984), 71-76. MR 731677 (85b:15020)
  • [2] R. Bhatia, Ch. Davis, and A. McIntosh, Perturbation of spectral subspaces and the solution of linear equations, Linear Algebra Appl. 52/53 (1983), 45-67. MR 709344 (85a:47020)
  • [3] C. R. Crawford, A stable generalized eigenvalue problem, SIAM J. Numer. Anal. 8 (1976), 854-860. MR 0431631 (55:4628)
  • [4] Ch. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal. 7 (1970), 1-46. MR 0264450 (41:9044)
  • [5] L. Elsner and P. Lancaster, The spectral variation of pencils of matrices, J. Comput. Math. 3 (1985), 262-274. MR 854367 (87j:15029)
  • [6] L. Eisner and Ji-guang Sun, Perturbation theorems for the generalized eigenvalue problem, Linear Algebra Appl. 48 (1982), 341-357. MR 683231 (84f:15012)
  • [7] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, RI, 1969. MR 0246142 (39:7447)
  • [8] A. J. Hoffman and H. W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37-39. MR 0052379 (14:611b)
  • [9] W. M. Kahan, Spectra of nearly Hermitian matrices, Proc. Amer. Math. Soc. 48 (1975), 11-17. MR 0369394 (51:5627)
  • [10] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966. MR 0203473 (34:3324)
  • [11] Ren-Cang Li, On perturbation theorems for the generalized eigenvalues of regular matrix pencils, Math. Numer. Sinica 11 (1989), 10-19 (Chinese); English transl., Chinese J. Numer. Math. Appl. 11:2 (1989), 24-35. MR 1013733 (90h:65058)
  • [12] -, Perturbation bounds for generalized eigenvalues. I, II, Math. Numer. Sinica 11:2 (1989), 196-204,11:3 (1989), 239-247 (Chinese); English transl, Chinese J. Numer. Math. Appl. 11:3 (1989), 34-43; 11:4 (1989), 1-9. MR 1015414 (90i:65066)
  • [13] -, A converse to the Bauer-Fike type theorem, Linear Algebra Appl. 109 (1988), 167-178. MR 961576 (89i:15012)
  • [14] -, On the variation of the spectra of matrix pencils, Linear Algebra Appl. 139 (1990), 147-164. MR 1071705 (91h:15012)
  • [15] -, M.S. dissertation, Computing Center, Academia Sinica, 1987.
  • [16] -, Bounds on perturbations of generalized singular values and of associated subspaces, SIAM J. Matrix Anal. Appl. 14 (1993), 195-234. MR 1199556 (94f:15010)
  • [17] -, Norms of certain matrices with applications to variations of the spectra of matrices and matrix pencils, Linear Algebra Appl. 182 (1993), 199-234. MR 1207083 (94c:15040)
  • [18] -, A perturbation bound for definite pencils, Linear Algebra Appl. 179 (1993), 191-202. MR 1200151 (94h:15007)
  • [19] Xing-guo Liu, The perturbation bounds of latent values of a class of matrix polynomials, Math. Numer. Sinica 11:1 (1989), 20-28. (Chinese) MR 1013734 (90g:15028)
  • [20] L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford 11 (1960), 50-59. MR 0114821 (22:5639)
  • [21] G. W. Stewart, On the sensitivity of the eigenvalue problem $ Ax = \lambda Bx$, SIAM J. Numer. Anal. 9 (1972), 669-686. MR 0311682 (47:244)
  • [22] -, Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Rev. 15 (1973), 727-764. MR 0348988 (50:1482)
  • [23] -, On the perturbation of pseudo-inverses, projections and linear least squares problem, SIAM Rev. 19 (1977), 634-662. MR 0461871 (57:1854)
  • [24] -, Perturbation bounds for the definite generalized eigenvalue problem, Linear Algebra Appl. 23 (1979), 69-83. MR 520614 (80c:15007)
  • [25] G. W. Stewart and Ji-guang Sun, Matrix perturbation analysis, Academic Press, New York, 1990. MR 1061154 (92a:65017)
  • [26] Ji-guang Sun, Invariant subspaces and generalized invariant subspaces. (I), (II), Math. Numer. Sinica 2 (1980), 1-13, 113-123. (Chinese)
  • [27] -, The perturbation bounds of generalized eigenvalues of a class of matrix-pairs, Math. Numer. Sinica 4 (1982), 23-29. (Chinese) MR 760751 (85h:15021)
  • [28] -, A note on Stewart's theorem for definite matrix pairs, Linear Algebra Appl. 48 (1982), 331-339. MR 683230 (84f:15013)
  • [29] -, The perturbation bounds for eigenspaces of a definite matrix-pair, Numer. Math. 41 (1983), 321-343. MR 712116 (85c:65045)
  • [30] -, On the perturbation of the eigenvalues of a normal matrix, Math. Numer. Sinica 6 (1984), 334-336. (Chinese) MR 768529 (86d:15010)
  • [31] F. Uhlig, A recurring theorem about pairs of quadratic forms and extensions: A survey, Linear Algebra Appl. 25 (1979), 219-237. MR 528727 (80h:15015)
  • [32] H. Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106-110. MR 0067842 (16:785a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 15A22, 65F15, 65F35

Retrieve articles in all journals with MSC: 15A22, 65F15, 65F35


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1994-1208838-3
Keywords: Diagonalizable matrix pencil, definite pencils, real spectrum, perturbation bounds
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society