Odd perfect numbers have a prime factor exceeding

Author:
Paul M. Jenkins

Journal:
Math. Comp. **72** (2003), 1549-1554

MSC (2000):
Primary 11A25, 11Y70

Published electronically:
January 8, 2003

MathSciNet review:
1972752

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that every odd perfect number is divisible by a prime greater than .

**1.**A. Bang,*Taltheoretiske undersøgelser*, Tidsskrift Math.**5 IV**(1886), 70-80, 130-137.**2.**M. Brandstein,*New lower bound for a factor of an odd perfect number*, Abstracts Amer. Math. Soc.**3**(1982), 257, 82T-10-240.**3.**R. P. Brent, G. L. Cohen, and H. J. J. te Riele,*Improved techniques for lower bounds for odd perfect numbers*, Math. Comp.**57**(1991), no. 196, 857–868. MR**1094940**, 10.1090/S0025-5718-1991-1094940-3**4.**E. Chein,*An odd perfect number has at least 8 prime factors*, Ph.D. thesis, Pennsylvania State University, 1979.**5.**J. Condict,*On an odd perfect number's largest prime divisor*, Senior Thesis, Middlebury College, 1978.**6.**Peter Hagis Jr.,*Outline of a proof that every odd perfect number has at least eight prime factors*, Math. Comp.**35**(1980), no. 151, 1027–1032. MR**572873**, 10.1090/S0025-5718-1980-0572873-9**7.**Peter Hagis Jr. and Graeme L. Cohen,*Every odd perfect number has a prime factor which exceeds 10⁶*, Math. Comp.**67**(1998), no. 223, 1323–1330. MR**1484897**, 10.1090/S0025-5718-98-00982-X**8.**Peter Hagis Jr. and Wayne L. McDaniel,*On the largest prime divisor of an odd perfect number. II*, Math. Comp.**29**(1975), 922–924. MR**0371804**, 10.1090/S0025-5718-1975-0371804-2**9.**Douglas E. Iannucci,*The second largest prime divisor of an odd perfect number exceeds ten thousand*, Math. Comp.**68**(1999), no. 228, 1749–1760. MR**1651761**, 10.1090/S0025-5718-99-01126-6**10.**Douglas E. Iannucci,*The third largest prime divisor of an odd perfect number exceeds one hundred*, Math. Comp.**69**(2000), no. 230, 867–879. MR**1651762**, 10.1090/S0025-5718-99-01127-8**11.**Paul M. Jenkins,*Odd perfect numbers have a prime factor exceeding*, Senior Thesis, Brigham Young University, 2000.**12.**Trygve Nagell,*Introduction to number theory*, Second edition, Chelsea Publishing Co., New York, 1964. MR**0174513****13.**Carl Pomerance,*Odd perfect numbers are divisible by at least seven distinct primes*, Acta Arith.**25**(1973/74), 265–300. MR**0340169**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11A25,
11Y70

Retrieve articles in all journals with MSC (2000): 11A25, 11Y70

Additional Information

**Paul M. Jenkins**

Affiliation:
Department of Mathematics, Brigham Young University, Provo, Utah 84602

Email:
pmj5@math.byu.edu

DOI:
https://doi.org/10.1090/S0025-5718-03-01496-0

Received by editor(s):
November 7, 2001

Published electronically:
January 8, 2003

Article copyright:
© Copyright 2003
American Mathematical Society