Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On equivariant global epsilon constants for certain dihedral extensions

Author: Manuel Breuning
Journal: Math. Comp. 73 (2004), 881-898
MSC (2000): Primary 11R33; Secondary 11R42, 11Y40
Published electronically: August 19, 2003
MathSciNet review: 2031413
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a conjecture of Bley and Burns which relates the epsilon constant of the equivariant Artin $L$-function of a Galois extension of number fields to certain natural algebraic invariants. For an odd prime number $p$, we describe an algorithm which either proves the conjecture for all degree $2p$ dihedral extensions of the rational numbers or finds a counterexample. We apply this to show the conjecture for all degree $6$dihedral extensions of $\mathbb Q$. The correctness of the algorithm follows from a finiteness property of the conjecture which we prove in full generality.

References [Enhancements On Off] (What's this?)

  • 1. E. Artin, J. Tate, Class field theory, W.A. Benjamin, Inc., New York-Amsterdam, 1968. MR 36:6383
  • 2. W. Bley, Computation of Stark-Tamagawa units, Math. Comp. 72 (2003), 1963-1974.
  • 3. W. Bley, Numerical evidence for a conjectural generalization of Hilbert's Theorem 132, LMS J. Comput. Math. 6 (2003), 68-88 (electronic).
  • 4. W. Bley, D. Burns, Étale cohomology and a generalisation of Hilbert's Theorem 132, Math. Z. 239 (2002), no. 1, 1-25. MR 2002j:11135
  • 5. W. Bley, D. Burns, Equivariant epsilon constants, discriminants and étale cohomology, preprint 2001, to appear in Proc. London Math. Soc.
  • 6. D. Burns, Equivariant Tamagawa numbers and Galois module theory I, Compositio Math. 129 (2001), no. 2, 203-237. MR 2002g:11152
  • 7. D. Burns, M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501-570. MR 2002m:11055
  • 8. C. W. Curtis, I. Reiner, Methods of representation theory. Vol. I, John Wiley & Sons, Inc, New York, 1981. MR 82i:20001
  • 9. S. Y. Kim, On the Equivariant Tamagawa Number Conjecture for Quaternion fields, thesis, King's College London (2002).
  • 10. S. Lang, Algebraic number theory, Second Edition, Graduate Texts in Mathematics 110, Springer-Verlag, New York, 1994. MR 95f:11085
  • 11. J. Martinet, Character theory and Artin $L$-functions, in: Algebraic number fields (ed. A. Fröhlich), pp. 1-87, Academic Press, London, 1977. MR 56:5502
  • 12. J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin, 1992.
  • 13. The Pari Group, PARI/GP, Version 2.1.4, 2000 Bordeaux, available from http://
  • 14. D. Pumplün, Über die Klassenzahl und die Grundeinheit des reellquadratischen Zahlkörpers, J. Reine Angew. Math. 230 (1968), 167-210. MR 37:189
  • 15. J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics 42, Springer-Verlag, New York-Heidelberg, 1977. MR 56:8675
  • 16. V. Snaith, Burns' equivariant Tamagawa invariant $T\Omega^{loc}(N/\mathbb{Q} ,1)$ for some quaternion fields, to appear in J. London Math. Soc.
  • 17. J. T. Tate, Local constants, in: Algebraic number fields (ed. A. Fröhlich), pp. 89-131, Academic Press, London, 1977. MR 56:15613

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R33, 11R42, 11Y40

Retrieve articles in all journals with MSC (2000): 11R33, 11R42, 11Y40

Additional Information

Manuel Breuning
Affiliation: Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom

Keywords: Equivariant Tamagawa number conjecture, equivariant epsilon constants, dihedral extensions
Received by editor(s): November 25, 2002
Published electronically: August 19, 2003
Additional Notes: The author was supported by the DAAD and the EPSRC
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society