Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

On equivariant global epsilon constants for certain dihedral extensions


Author: Manuel Breuning
Journal: Math. Comp. 73 (2004), 881-898
MSC (2000): Primary 11R33; Secondary 11R42, 11Y40
Published electronically: August 19, 2003
MathSciNet review: 2031413
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a conjecture of Bley and Burns which relates the epsilon constant of the equivariant Artin $L$-function of a Galois extension of number fields to certain natural algebraic invariants. For an odd prime number $p$, we describe an algorithm which either proves the conjecture for all degree $2p$ dihedral extensions of the rational numbers or finds a counterexample. We apply this to show the conjecture for all degree $6$dihedral extensions of $\mathbb Q$. The correctness of the algorithm follows from a finiteness property of the conjecture which we prove in full generality.


References [Enhancements On Off] (What's this?)

  • 1. E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0223335 (36 #6383)
  • 2. W. Bley, Computation of Stark-Tamagawa units, Math. Comp. 72 (2003), 1963-1974.
  • 3. W. Bley, Numerical evidence for a conjectural generalization of Hilbert's Theorem 132, LMS J. Comput. Math. 6 (2003), 68-88 (electronic).
  • 4. W. Bley and D. Burns, Étale cohomology and a generalisation of Hilbert’s Theorem 132, Math. Z. 239 (2002), no. 1, 1–25. MR 1879327 (2002j:11135), http://dx.doi.org/10.1007/s002090100281
  • 5. W. Bley, D. Burns, Equivariant epsilon constants, discriminants and étale cohomology, preprint 2001, to appear in Proc. London Math. Soc.
  • 6. D. Burns, Equivariant Tamagawa numbers and Galois module theory. I, Compositio Math. 129 (2001), no. 2, 203–237. MR 1863302 (2002g:11152), http://dx.doi.org/10.1023/A:1014502826745
  • 7. D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501–570 (electronic). MR 1884523 (2002m:11055)
  • 8. Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, John Wiley & Sons Inc., New York, 1981. With applications to finite groups and orders; Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 632548 (82i:20001)
  • 9. S. Y. Kim, On the Equivariant Tamagawa Number Conjecture for Quaternion fields, thesis, King's College London (2002).
  • 10. Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723 (95f:11085)
  • 11. J. Martinet, Character theory and Artin 𝐿-functions, Algebraic number fields: 𝐿-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 1–87. MR 0447187 (56 #5502)
  • 12. J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin, 1992.
  • 13. The Pari Group, PARI/GP, Version 2.1.4, 2000 Bordeaux, available from http:// www.parigp-home.de/.
  • 14. Dieter Pumplün, Über die Klassenzahl und die Grundeinheit des reellquadratischen Zahlkörpers, J. Reine Angew. Math. 230 (1968), 167–210 (German). MR 0224590 (37 #189)
  • 15. Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380 (56 #8675)
  • 16. V. Snaith, Burns' equivariant Tamagawa invariant $T\Omega^{loc}(N/\mathbb{Q} ,1)$ for some quaternion fields, to appear in J. London Math. Soc.
  • 17. J. T. Tate, Local constants, Algebraic number fields: 𝐿-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 89–131. Prepared in collaboration with C. J. Bushnell and M. J. Taylor. MR 0457408 (56 #15613)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R33, 11R42, 11Y40

Retrieve articles in all journals with MSC (2000): 11R33, 11R42, 11Y40


Additional Information

Manuel Breuning
Affiliation: Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom
Email: breuning@mth.kcl.ac.uk

DOI: http://dx.doi.org/10.1090/S0025-5718-03-01605-3
PII: S 0025-5718(03)01605-3
Keywords: Equivariant Tamagawa number conjecture, equivariant epsilon constants, dihedral extensions
Received by editor(s): November 25, 2002
Published electronically: August 19, 2003
Additional Notes: The author was supported by the DAAD and the EPSRC
Article copyright: © Copyright 2003 American Mathematical Society