Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable


Author: C. Carstensen
Journal: Math. Comp. 73 (2004), 1153-1165
MSC (2000): Primary 65N30; Secondary 65N15
DOI: https://doi.org/10.1090/S0025-5718-03-01580-1
Published electronically: August 12, 2003
MathSciNet review: 2047082
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: All first-order averaging or gradient-recovery operators for lowest-order finite element methods are shown to allow for an efficient a posteriori error estimation in an isotropic, elliptic model problem in a bounded Lipschitz domain $\Omega$ in $\mathbb{R}^d$. Given a piecewise constant discrete flux $p_h\in P_h$(that is the gradient of a discrete displacement) as an approximation to the unknown exact flux $p$(that is the gradient of the exact displacement), recent results verify efficiency and reliability of

\begin{displaymath}\eta_M:=\min\{\Vert p_h-q_h\Vert _{L^2(\Omega)}:\,q_h\in\mathcal{Q}_h\} \end{displaymath}

in the sense that $\eta_M$ is a lower and upper bound of the flux error $\Vert p-p_h\Vert _{L^2(\Omega)}$ up to multiplicative constants and higher-order terms. The averaging space $\mathcal{Q}_h$ consists of piecewise polynomial and globally continuous finite element functions in $d$ components with carefully designed boundary conditions. The minimal value $\eta_M$ is frequently replaced by some averaging operator $A: P_h\rightarrow\mathcal{Q}_h$applied within a simple post-processing to $p_h$. The result $q_h:=Ap_h\in\mathcal{Q}_h$ provides a reliable error bound with $\eta_M\leq\eta_A:=\Vert p_h-Ap_h\Vert _{L^2(\Omega)}$.

This paper establishes $\eta_A\leq C_{\mbox{\tiny eff}}\,\eta_M$ and so equivalence of $\eta_M$ and $\eta_A$. This implies efficiency of $\eta_A$ for a large class of patchwise averaging techniques which includes the ZZ-gradient-recovery technique. The bound $C_{\mbox{\tiny eff}}\le 3.88$established for tetrahedral $P_1$ finite elements appears striking in that the shape of the elements does not enter: The equivalence $\eta_A\approx\eta_M$ is robust with respect to anisotropic meshes. The main arguments in the proof are Ascoli's lemma, a strengthened Cauchy inequality, and elementary calculations with mass matrices.


References [Enhancements On Off] (What's this?)

  • [AO] M. AINSWORTH, J.T ODEN: A posteriori error estimation in finite element analysis, John Wiley & Sons, New York, 2001. MR 2003b:65001
  • [BS] I. BABUSSKA, T. STROUBOULIS: The Finite Element Method and its Reliability. Oxford University Press, 2001. MR 2002k:65001
  • [BC1] S. BARTELS, C. CARSTENSEN: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM. Math. Comp. 71 (2002) 971-994.MR 2003e:65207
  • [BC2] S. BARTELS, C. CARSTENSEN: Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math. (2003) to appear.
  • [BR] R. BECKER, R. RANNACHER: A feed-back approach to error control in finite element methods: basic analysis and examples. East-West Journal of Numerical Mathematics 4 Number 4 (1996) 237-264. MR 98m:65185
  • [B] D. BRAESS: Enhanced assumed strain elements and locking in membrane problems, Comp. Meths. Appl. Mech. Engrg. 165 (1998) 155-174.MR 2000j:74084
  • [C] C. CARSTENSEN: Quasi-interpolation and a posteriori error analysis in finite element method. M2AN 33 (1999) 1187-1202.MR 2001a:65135
  • [CA] C. CARSTENSEN, J. ALBERTY: Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening. Comput. Methods Appl. Mech. Engrg. 192 (2003) 1435-1450.
  • [CB] C. CARSTENSEN, S. BARTELS: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids, part I: Low order conforming, nonconforming, and mixed FEM. Math. Comp. 71 (2002) 945-969.MR 2003e:65212
  • [CBJ] C. CARSTENSEN, S. BARTELS, S. JANSCHE: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92 (2002) 233-256.MR
  • [CF1] C. CARSTENSEN, S.A. FUNKEN: Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods, East-West Journal of Numerical Analysis, 8, 3, 153-256. MR 2002a:65173
  • [CF2] C. CARSTENSEN, S.A. FUNKEN: Fully reliable localised error control in the FEM, SIAM J. Sci. Comp., 21, 4, 1465-1484. MR 2000k:65205
  • [CF3] C. CARSTENSEN, S.A. FUNKEN: Averaging technique for FE - a posteriori error control in elasticity. Part I: Conforming FEM. Comput. Methods Appl. Mech. Engrg. 190 (2001), pp. 2483-2498, Part II: $\lambda$-independent estimates. Comput. Methods Appl. Mech. Engrg. 190 (2001) 4663-4675. Part III: Locking-free nonconforming FEM. Comput. Methods Appl. Mech. Engrg. 191 (2001), no. 8-10, 861-877. MR 2002a:74114, MR 2002d:65140, MR 2002j:65106
  • [CF4] C. CARSTENSEN, S.A. FUNKEN: A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Math. Comp. 70 (2001) 1353-1381.MR 2002f:65157
  • [CV] C. CARSTENSEN, R. VERFÜRTH: Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36, 5,(1999) 1571-1587.MR 2000g:65115
  • [N] R. NOCHETTO: Removing the saturation assumption in a posteriori error analysis. Rend., Sci. Mat. Appl., A 127, 67-82 (1994). MR 95c:65187
  • [R1] R. RODRIGUEZ: Some remarks on Zienkiewicz-Zhu estimator. Int. J. Numer. Meth. in PDE 10 (1994) 625-635. MR 95e:65103
  • [R2] R. RODRIGUEZ: A posteriori error analysis in the finite element method. Finite element methods. 50 years of the Courant element. Conference held at the University of Jyvaeskylae, Finland, 1993. Inc. Lect. Notes Pure Appl. Math. 164, 389-397 (1994). MR 95g:65158
  • [V] R. VERFÜRTH: A review of a posteriori error estimation and adaptive mesh-refinement techniques, 1996, Wiley-Teubner.
  • [ZZ] O.C. ZIENKIEWICZ, J.Z. ZHU: A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Meth. Engrg., 24 (1987) 337-357. MR 87m:73055

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N15

Retrieve articles in all journals with MSC (2000): 65N30, 65N15


Additional Information

C. Carstensen
Affiliation: Institute for Applied Mathematics and Numerical Analysis, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria
Email: Carsten.Carstensen@tuwien.ac.at

DOI: https://doi.org/10.1090/S0025-5718-03-01580-1
Keywords: A posteriori error estimate, efficiency, finite element method, gradient recovery, averaging operator, mixed finite element method, nonconforming finite element method
Received by editor(s): July 26, 2002
Received by editor(s) in revised form: January 1, 2003
Published electronically: August 12, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society