Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing in groups of Lie type


Authors: Arjeh M. Cohen, Scott H. Murray and D. E. Taylor
Journal: Math. Comp. 73 (2004), 1477-1498
MSC (2000): Primary 20G15, 20C40
DOI: https://doi.org/10.1090/S0025-5718-03-01582-5
Published electronically: July 7, 2003
MathSciNet review: 2047097
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe two methods for computing with the elements of untwisted groups of Lie type: using the Steinberg presentation and using highest weight representations. We give algorithms for element arithmetic within the Steinberg presentation. Conversion between this presentation and linear representations is achieved using a new generalisation of row and column reduction.


References [Enhancements On Off] (What's this?)

  • 1. J. L. Alperin and Rowen B. Bell, Groups and representations, Springer-Verlag, New York, 1995. MR 96m:20001
  • 2. W. W. Bosma and J. J. Cannon, Handbook of magma functions, School of Mathematics and Statistics, University of Sydney, Sydney, 1997.
  • 3. L. Babai, A. J. Goodman, W. M. Kantor, E. M. Luks, and P. P. Pálfy, Short presentations for finite groups, J. Algebra 194 (1997), no. 1, 79-112. MR 98h:20044
  • 4. Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981, Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 83g:17001
  • 5. G. Butler, Fundamental algorithms for permutation groups, Springer-Verlag, Berlin, 1991. MR 94d:68049
  • 6. Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972, Pure and Applied Mathematics, Vol. 28. MR 53:10946
  • 7. Roger W. Carter, Finite groups of Lie type, John Wiley & Sons Ltd., Chichester, 1993, Conjugacy classes and complex characters, Reprint of the 1985 original, A Wiley-Interscience Publication. MR 94k:20020
  • 8. C. Chevalley, Sur certains groupes simple, Tôhoku Math. J. (2) 7 (1955), 14-66. MR 17:457c
  • 9. M. Demazure, Données radicielles, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1964), Fasc. 6, Exposé 21, Inst. Hautes Études Sci., Paris, 1965. MR 34:7524
  • 10. Willem A. de Graaf, Lie algebras: theory and algorithms, North-Holland Publishing Co., Amsterdam, 2000. MR 2001j:17011
  • 11. W. A. de Graaf, Constructing representations of split semisimple Lie algebras, J. Pure Appl. Algebra 164 (2001), no. 1-2, 87-107, Effective methods in algebraic geometry (Bath, 2000). MR 2002h:17007
  • 12. P. Flajolet, X. Gourdon, and D. Panario, The complete analysis of a polynomial factorization algorithm over finite fields, J. Algorithms 40 (2001), no. 1, 37-81. MR 2002f:68193
  • 13. I. B. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980/81), no. 1, 23-66. MR 84f:17004
  • 14. The GAP Group, Aachen, St Andrews, GAP - Groups, Algorithms, and Programming, Version 4.1, 1999 (http://www.gap-system.org).
  • 15. Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer, CHEVIE--a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175-210, Computational methods in Lie theory (Essen, 1994). MR 99m:20017 10pt
  • 16. Peter B. Gilkey and Gary M. Seitz, Some representations of exceptional Lie algebras, Geom. Dedicata 25 (1988), no. 1-3, 407-416, Geometries and groups (Noordwijkerhout, 1986). MR 89h:20056
  • 17. Sergei Haller, Unipot--a system for computing with elements of unipotent subgroups of Chevalley groups, version 1.1, Tech. report, Justus-Liebig Universität, Germany, July 2000, http://www.gap-system.org/Info4/deposit.html#pkg.
  • 18. R. B. Howlett, L. J. Rylands, and D. E. Taylor, Matrix generators for exceptional groups of Lie type, J. Symbolic Comput. 31 (2001), no. 4, 429-445. MR 2002c:20078
  • 19. Alexander Hulpke and Ákos Seress, Short presentations for three-dimensional unitary groups, J. Algebra 245 (2001), no. 2, 719-729. MR 2002m:20079
  • 20. William M. Kantor and Ákos Seress, Black box classical groups, Mem. Amer. Math. Soc. 149 (2001), no. 708, viii+168. MR 2001m:68066
  • 21. Charles R. Leedham-Green, The computational matrix group project, Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, 2001, pp. 229-247. MR 2002d:20084
  • 22. C. R. Leedham-Green and L. H. Soicher, Collection from the left and other strategies, J. Symbolic Comput. 9 (1990), no. 5-6, 665-675, Computational group theory, Part 1. MR 92b:20021
  • 23. Martin W. Liebeck and Jan Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc. (3) 55 (1987), no. 2, 299-330. MR 89b:20068
  • 24. R. J. Riebeek, Computations in association schemes, Ph.D. thesis, Eindhoven University of Technology, 1998.
  • 25. L. J. Rylands, A formula for signs of structure constants, Unpublished, 2001.
  • 26. Charles C. Sims, Computation with finitely presented groups, Cambridge University Press, Cambridge, 1994. MR 95f:20053
  • 27. T. A. Springer, Linear algebraic groups, second ed., Birkhäuser Boston Inc., Boston, MA, 1998. MR 99h:20075
  • 28. Robert Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain, 1962, pp. 113-127. MR 27:3638
  • 29. Robert Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56. MR 27:5870
  • 30. R. Steinberg, Lectures on Chevalley groups, Tech. report, Yale University, 1968. MR 57:6215
  • 31. M. A. A. van Leeuwen, A. M. Cohen, and B. Lisser, LiE manual, CWI/CAN, Amsterdam, 1992, Manual for the software package LiE for Lie group theoretical computations. http://young.sp2mi.univ-poitiers.fr/ marc/LiE/.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 20G15, 20C40

Retrieve articles in all journals with MSC (2000): 20G15, 20C40


Additional Information

Arjeh M. Cohen
Affiliation: Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
Email: A.M.Cohen@tue.nl

Scott H. Murray
Affiliation: Department of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
Email: murray@maths.usyd.edu.au

D. E. Taylor
Affiliation: Department of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
Email: D.Taylor@maths.usyd.edu.au

DOI: https://doi.org/10.1090/S0025-5718-03-01582-5
Keywords: Group of Lie type, reductive algebraic group, computational algebra
Received by editor(s): January 24, 2002
Received by editor(s) in revised form: December 15, 2002
Published electronically: July 7, 2003
Additional Notes: This paper was written during a stay of the first two authors at the University of Sydney. They wish to thank the institute for its hospitality.
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society