Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Continuous-time Kreiss resolvent condition on infinite-dimensional spaces

Authors: Tatjana Eisner and Hans Zwart
Journal: Math. Comp. 75 (2006), 1971-1985
MSC (2000): Primary 47D06, 15A60; Secondary 65J10, 34K20, 47N40
Published electronically: July 10, 2006
MathSciNet review: 2240644
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given the infinitesimal generator $ A$ of a $ C_0$-semigroup on the Banach space $ X$ which satisfies the Kreiss resolvent condition, i.e., there exists an $ M>0$ such that $ \Vert (sI-A)^{-1}\Vert \leq \frac{M}{\mathrm {Re}(s)}$ for all complex $ s$ with positive real part, we show that for general Banach spaces this condition does not give any information on the growth of the associated $ C_0$-semigroup. For Hilbert spaces the situation is less dramatic. In particular, we show that the semigroup can grow at most like $ t$. Furthermore, we show that for every $ \gamma \in (0,1)$ there exists an infinitesimal generator satisfying the Kreiss resolvent condition, but whose semigroup grows at least like $ t^\gamma$. As a consequence, we find that for $ {\mathbb{R}}^N$ with the standard Euclidian norm the estimate $ \Vert\exp(At)\Vert \leq M_1 \min(N,t)$ cannot be replaced by a lower power of $ N$ or $ t$.

References [Enhancements On Off] (What's this?)

  • 1. B. Aupetit and D. Drissi, Conformal transformations of dissipative operators, Math. Proc. R. Ir. Acad., 99A, pp. 141-153, 1999. MR 1881805 (2002j:47062)
  • 2. N.-E. Benamara and N. Nikolski, Resolvent test for similarity to a normal operator, Proc. London Math. Soc., 78, pp. 585-626, 1999. MR 1674839 (2000c:47006)
  • 3. N. Borovykh, and M.N. Spijker, Bounding partial sums of Fourier series in weighted $ L^2$-norms, with applications to matrix analysis, Journal of Computational and Applied Mathematics, 147, pp. 349-368, 2002.MR 1933601 (2003h:42007)
  • 4. J.A. van Casteren, Operators similar to unitary or selfadjoint ones, Pacific Journal of Mathematics, 104, 1983, pp. 241-255.MR 0683741 (85e:47022)
  • 5. R.F. Curtain and H.J. Zwart, An introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995.MR 1351248 (96i:93001)
  • 6. J.L.M. van Dorsselaer, J.F.B.M. Kraaijevanger and M.N. Spijker, Linear stability analysis in the numerical solution of initial value problems, Acta Numerica, pp. 199-237, 1993. MR 1224683 (94e:65051)
  • 7. T. Eisner, Polynomially bounded $ C_0$-semigroups, Semigroup Forum, 70, pp. 118-126, 2005. MR 2107198 (2005h:47080)
  • 8. K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations. Graduate Text in Mathematics, 194, Springer, 2000. MR 1721989 (2000i:47075)
  • 9. R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. AMS, 176, pp. 227-252, 1973. MR 0312139 (47:701)
  • 10. J.F.B.M. Kraaijevanger, Two counterexamples related to the Kreiss matrix theorem, BIT, 34, pp. 113-119, 1994. MR 1429692 (98c:65154)
  • 11. H.-O. Kreiss, Über Matrizen die beschränkte Halbgruppen erzeugen, Math. Scand., 7, pp. 71-80, 1959. MR 0110952 (22:1820)
  • 12. H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, BIT, 2, pp. 153-181, 1962. MR 0165712 (29:2992)
  • 13. R.J. Leveque and L. Trefethen, On the resolvent condition in the Kreiss matrix theorem, BIT, 24, pp. 584-591, 1984. MR 0764830 (86c:39004)
  • 14. C. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT, 31, pp. 293-313, 1991. MR 1112225 (92h:65145)
  • 15. C.A. McCarthy and J. Schwartz, On the norm of a finite Boolean algebra of projections, and applications to theorems of Kreiss and Morton, Communications on Pure and Applied Mathematics, XVIII, pp. 191-201, 1965.MR 0180867 (31:5097)
  • 16. N. Kalton, S. Montgomery-Smith, The paper by Spijker, Tracogna and Welfert, 2004.
  • 17. J. Prüss, On the spectrum of $ C_0$-semigroups, Trans. AMS, 284, pp. 847-857, 1984. MR 0743749 (85f:47044)
  • 18. M.N. Spijker, S. Tracogna, and B.D. Welfert, About the sharpness of the stability estimates in the Kreiss matrix theorem, Mathematics of Computation, 72, pp. 697-713, 2002. MR 1954963 (2004b:15054)
  • 19. J.C. Strikwerda and B.A. Wade, A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, Linear operators (Warsaw, 1994), Banach Center Publ., 38, pp. 339-360, 1997. MR 1457017 (98f:15020)
  • 20. H. Zwart, On the estimate $ \Vert(sI-A)^{-1}\Vert \leq M/\mathrm{Re}(s)$, Ulmer Semenaire 2003, pp. 384-388, 2003.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 47D06, 15A60, 65J10, 34K20, 47N40

Retrieve articles in all journals with MSC (2000): 47D06, 15A60, 65J10, 34K20, 47N40

Additional Information

Tatjana Eisner
Affiliation: Arbeitsbereich Funktionalanalysis, Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany

Hans Zwart
Affiliation: Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Keywords: Kreiss resolvent estimate, $C_0$-semigroups, stability estimate
Received by editor(s): March 14, 2005
Received by editor(s) in revised form: September 13, 2005
Published electronically: July 10, 2006
Dedicated: Dedicated to M.N. Spijker on the occasion of his 65th birthday.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society