Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

New expansions of numerical eigenvalues for $ -\Delta u=\lambda \rho u$ by nonconforming elements


Authors: Qun Lin, Hung-Tsai Huang and Zi-Cai Li
Journal: Math. Comp. 77 (2008), 2061-2084
MSC (2000): Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-08-02098-X
Published electronically: May 29, 2008
MathSciNet review: 2429874
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper explores new expansions of the eigenvalues for $ -\Delta u=\lambda \rho u$ in $ S$ with Dirichlet boundary conditions by the bilinear element (denoted $ Q_1$) and three nonconforming elements, the rotated bilinear element (denoted $ Q_1^{rot}$), the extension of $ Q_1^{rot}$ (denoted $ EQ_1^{rot}$) and Wilson's elements. The expansions indicate that $ Q_1$ and $ Q_1^{rot}$ provide upper bounds of the eigenvalues, and that $ EQ_1^{rot}$ and Wilson's elements provide lower bounds of the eigenvalues. By extrapolation, the $ O(h^4)$ convergence rate can be obtained, where $ h$ is the maximal boundary length of uniform rectangles. Numerical experiments are carried out to verify the theoretical analysis made.


References [Enhancements On Off] (What's this?)

  • 1. I. Babuska and J.E. Osborn, Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods with particular attention to the case of multiple eigenvalues, SIAM J. Numer. Anal., Vol.24, pp.1249-1276, 1987. MR 917451 (88j:65234)
  • 2. I. Babuska and J.E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp., Vol.52, pp.275-297, 1989. MR 962210 (89k:65132)
  • 3. I. Babuska and J. Osborn, Eigenvalue problems in Finite Element Method (Part I), edited by P.G. Ciarlet and J.L. Lions, pp.641-787, North-Holland, Ansterdam, 1991. MR 1115240
  • 4. H. Blum, Q. Lin and R. Rannacher, Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math., Vol.49, pp. 11-37, 1986. MR 847015 (87m:65172)
  • 5. J.H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal., Vol.7, pp. 113-124, 1970. MR 0263214 (41:7819)
  • 6. F. Chatelin, Convergence of approximation methods to compute eigenelements of linear operations, SIAM J. Numer. Anal., Vol.10, pp.939-948, 1973. MR 0349004 (50:1498)
  • 7. H. Chen and B. Li, Superconvergence analysis and error expansion for the Wilson nonconforming finite element, Numer. Math., Vol.69, pp.125-140, 1994. MR 1310313 (95k:65105)
  • 8. G. E. Forsythe, Asymptotic lower bounds for frequencies of certain polygonal membrances, Pacific J. Math., Vol 4, pp.467-480, 1954. MR 0063784 (16:179g)
  • 9. J. Hu, P.-B. Ming and Z.-C. Shi, Nonconforming quadrilateral rotated $ Q_1$ element for Reissner-Mindlin plate, J. Comp. Math., Vol.21, No.1, pp.25-32, 2003. MR 1974269 (2004c:65143)
  • 10. W.G. Koluta, Approximation in variationally posed eigenvalue problems, Numer. Math., Vol.29, pp.159-171, 1978. MR 482047 (80a:49077)
  • 11. Z. C. Li, Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities, Kluwer Academic Publishers, 1998. MR 1639538 (99i:65001)
  • 12. Q. Lin, Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners, Numer. Math., Vol. 58, pp.631-640,1991. MR 1083525 (92d:65198)
  • 13. Q. Lin and J. Lin, Finite Element Methods; Accuracy and Improvement, Science Press, Beijing, 2006.
  • 14. Q. Lin and Q. Zhu, Processing and Post processing for the Finite Element Method (in Chinese), Shanghai Scientific & Technical Press., 1994.
  • 15. T. Lü, C.B. Liem and T.M.Shih, The Splitting Extrapolation and Combination Techniques $ -$ New Techniques of Parallel Solutions for Multi-dimensional Problems (in Chinese), Scientific Publishers, Beijing, 1998.
  • 16. P. Lua and Q. Lin, High accuracy analysis of the Wilson element, J. Comp. Math., Vol.17, No.2, pp.113-124, 1999. MR 1688000 (2000b:65220)
  • 17. B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviat, Eigenvalue approximation by mixed and hybrid methods, Math. Comp., Vol.36, No.154, pp.427-453, 1981. MR 606505 (82b:65108)
  • 18. J.G. Pierce and R.S. Varga, High order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: 2. Improved error bounds for eigenfunctions, Numer. Math., Vol.19, pp.155-169, 1972. MR 0323133 (48:1491)
  • 19. R. Rannacher, Nonconforming finite element methods for eigenvalue problems in linear plate theory, Numer. Math., Vol.33, pp.23-43, 1979. MR 545740 (80i:65124)
  • 20. G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall Series in Automatic Comp., Prentice-Hall, Englewood Cliffs, NJ, 1973. MR 0443377 (56:1747)
  • 21. H. F. Weinberger, Variational Methods for Eigenvalue Approximation, SIAM, Philadelphia, 1974. MR 0400004 (53:3842)
  • 22. D.-S. Wu, Convergence and superconvergence of Hermite bicubic element for eigenvalue problem of the biharmonic equation, J. Comp. Math., Vol.19, No.2, pp.139-142, 2001. MR 1816677 (2001m:65161)
  • 23. Y.D. Yang, Computable error bounds for an eigenvalue problem in the finite element method, Chinese J. Numer. Math. Appl., Vol.17, No.1, pp.68-77, 1995. MR 1392853 (97d:65058)
  • 24. Y. D. Yang, A posteriori error estimates in Adini finite element for eigenvalue problems, J. Comp. Math., Vol.18, pp.413-418, 2000. MR 1773912 (2001c:65140)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30

Retrieve articles in all journals with MSC (2000): 65N30


Additional Information

Qun Lin
Affiliation: Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, P.O. Box 2719, Beijing 1000080, China
Email: qlin@lsec.cc.ac.cn

Hung-Tsai Huang
Affiliation: Department of Applied Mathematics, I-Shou University, Taiwan 840
Email: huanght@isu.edu.tw

Zi-Cai Li
Affiliation: Department of Applied Mathematics, and Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan 80424
Email: zcli@math.nsysu.edu.tw

DOI: https://doi.org/10.1090/S0025-5718-08-02098-X
Keywords: Bilinear elements, rotated bilinear element, the extension of rotated bilinear element, Wilson's element, eigenvalue problem, extrapolation, global superconvergence.
Received by editor(s): February 24, 2006
Received by editor(s) in revised form: February 14, 2007
Published electronically: May 29, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society