Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data


Author: Yinnian He
Journal: Math. Comp. 77 (2008), 2097-2124
MSC (2000): Primary 35L70, 65N30, 76D06
DOI: https://doi.org/10.1090/S0025-5718-08-02127-3
Published electronically: May 8, 2008
MathSciNet review: 2429876
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper considers the stability and convergence results for the Euler implicit/explicit scheme applied to the spatially discretized two-dimensional (2D) time-dependent Navier-Stokes equations. A Galerkin finite element spatial discretization is assumed, and the temporal treatment is implicit/explict scheme, which is implicit for the linear terms and explicit for the nonlinear term. Here the stability condition depends on the smoothness of the initial data $ u_0\in H^\alpha$, i.e., the time step condition is $ \tau\leq C_0$ in the case of $ \alpha=2$, $ \tau\vert\log h\vert\leq C_0$ in the case of $ \alpha=1$ and $ \tau h^{-2}\leq C_0$ in the case of $ \alpha=0$ for mesh size $ h$ and some positive constant $ C_0$. We provide the $ H^2$-stability of the scheme under the stability condition with $ \alpha=0,1,2$ and obtain the optimal $ H^1-L^2$ error estimate of the numerical velocity and the optimal $ L^2$ error estimate of the numerical pressure under the stability condition with $ \alpha=1,2$.


References [Enhancements On Off] (What's this?)

  • 1. R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • 2. A. AIT OU AMMI AND M. MARION, Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier-Stokes equations, Numer. Math., 68 (1994), pp. 189-213. MR 1283337 (95c:65174)
  • 3. G. A. BAKER, Galerkin approximations for the Navier-Stokes equations, manuscript, Harvard University, Cambridge, MA, 1976.
  • 4. G. A. BAKER, V. A. DOUGALIS, AND O. A. KARAKASHIAN, On a high order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comp., 39 (1982), pp. 339-375. MR 669634 (84h:65096)
  • 5. J. BERCOVIER AND O. PIRONNEAU, Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. Math., 33 (1979), pp.  211-224. MR 549450 (81g:65145)
  • 6. J. R. CANNON AND YANPING LIN, A priori $ L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27 (1990), pp. 595-607. MR 1041253 (91b:65118)
  • 7. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • 8. W. E AND J.-G. LIU, Projection methods I: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32 (1995), 1017-1057. MR 1342281 (96e:65061)
  • 9. G. FAIRWEATHER, H. MA AND W. SUN, Orthogonal Spline Collocation Methods for the Navier-Stokes Equations in Stream Function and Vorticity Formulation, submitted.
  • 10. V. GIRAULT AND P. A. RAVIART, Finite Element Method for Navier-Stokes Equations: Theory and algorithms, Springer-Verlag, Berlin, Heidelberg, 1987. MR 851383 (88b:65129)
  • 11. YINNIAN HE, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with $ H^2$ or $ H^1$ initial data, Numer. Methods for PDEs, 21 (2005), pp. 875-904. MR 2154224 (2006d:65108)
  • 12. YINNIAN HE, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with with $ L^2$ initial data, Numer. Methods for PDEs, 24 (2008), pp. 79-103. MR 2371349
  • 13. YINNIAN HE AND KAITAI LI, Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations, Numer. Math., 79 (1998), pp. 77-106. MR 1608417 (99c:65165)
  • 14. YINNIAN HE AND KAITAI LI, Nonlinear Galerkin method and two-step method for the Navier-Stokes equations, Numer. Methods for PDEs, 12 (1996):283-305. MR 1388441 (97g:65192)
  • 15. YINNIAN HE, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 2003, 41(4):1263-1285. MR 2034880 (2004k:65173)
  • 16. YINNIAN HE AND K. M. LIU, A multi-level finite element method for the time-dependent Navier-Stokes equations, Numer. Methods for PDEs, 21 (2005), pp. 1052-1068. MR 2169167 (2006h:76079)
  • 17. YINNIAN HE, K. M. LIU AND WEIWEI SUN, Multi-level spectral Galerkin method for the Navier-Stokes equations I: spatial discretization, Numer. Math., 101 (2005), pp. 501-522. MR 2194826 (2006j:76089)
  • 18. YINNIAN HE, YANPING LIN AND WEIWEI SUN, Stabilized finite element methods for the nonstationary Navier-Stokes problem, Discrete and Continuous Dynamical Systems-Series B, 6 (2006), pp. 41-68. MR 2172195 (2006g:65152)
  • 19. YINNIAN HE AND WEIWEI SUN, Stability and convegence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 2007, 45(2):837-869. MR 2300299
  • 20. YINNIAN HE, Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes problem, Mathmatics of Computation, 74 (2005), pp. 1201-1216. MR 2136999 (2006i:65150)
  • 21. YINNIAN HE, HUANLING MIAO, R. M. M. MATTHEIJ AND ZHANGXIN CHEN Numerical analysis of a modified finite element nonlinear Galerkin method, Numer. Math., 97 (2004), pp. 725-756 MR 2127930 (2005m:65188)
  • 22. J. G. HEYWOOD AND R. RANNACHER, Finite-element approximations of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order spatial discretization, SIAM J. Numer. Anal., 19 (1982), pp. 275-311. MR 650052 (83d:65260)
  • 23. J. G. HEYWOOD AND R. RANNACHER, Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: Error estimates for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), pp. 353-384. MR 1043610 (92c:65133)
  • 24. A. T. HILL AND E. S¨ULI, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal., 20 (2000), pp. 633-667. MR 1795301 (2001j:37138)
  • 25. E. ISSACSON AND H. B. KELLER, Analysis of Numerical Methods, Wiley, New York, 1966. MR 0201039 (34:924)
  • 26. H. JOHNSTON AND J.-G. LIU, Accurate, stable and efficient Navier-Stokes slovers based on explicit treatment of the pressure term, J. Computational Physics, 199 (2004), pp. 221-259. MR 2081004 (2005b:76093)
  • 27. J. KIM AND P. MOIN, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), pp. 308-323. MR 796611 (87a:76046)
  • 28. R. B. KELLOGG AND J. E. OSBORN, A regularity result for the Stokes problem in a convex polygon, J. Functional Anal., 21 (1976), pp. 397-431. MR 0404849 (53:8649)
  • 29. S. LARSSON, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems, SIAM J. Numer. Anal., 26 (1989), pp. 348-365. MR 987394 (90g:65124)
  • 30. YANPING LIN, Galerkin methods for nonlinear parabolic integrodifferential equations with nonlinear boundary conditions, SIAM J. Numer. Anal., 27 (1990), pp. 608-621. MR 1041254 (91e:65128)
  • 31. HEPING MA AND WEIWEI SUN, Optimal error estimates of the Legendre Petro-Galerkin and pseudospectral methods for the generalized Korteweg-de Vries Equation, SIAM J. Numer. Anal., 39 (2001), pp. 1380-1394. MR 1870846 (2002k:65162)
  • 32. M. MARION AND R. TEMAM, Navier-Stokes equations: Theory and approximation, in: Handbook of Numerical Analysis, Vol. VI, pp. 503-688, North-Holland, Amsterdam, 1998. MR 1665429 (2000a:76002)
  • 33. R. H. NOCHETTO AND J.-H. PYO, A finite element Gauge-Uzawa method Part I: Navier-Stokes equations, SIAM J. Numer. Anal., 43 (2005), pp. 1043-1068. MR 2177795 (2006m:65206)
  • 34. J. SHEN, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38 (1990), pp. 201-229. MR 1116181 (93a:65130)
  • 35. J. C. SIMO AND F. ARMERO, Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations, Comput. Methods Appl. Mech. Engrg., 111 (1994), pp. 111-154. MR 1259618 (94k:76078)
  • 36. R. TEMAM, Navier-Stokes Equations, Theory and Numerical Analysis, 3rd ed., North-Holland, Amsterdam, 1983. MR 769654 (86m:76003)
  • 37. F. TONE, Error analysis for a second scheme for the Navier-Stokes equations, Applied Numerical Mathematics, 50 (2004), pp. 93-119. MR 2060828 (2005b:65101)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 35L70, 65N30, 76D06

Retrieve articles in all journals with MSC (2000): 35L70, 65N30, 76D06


Additional Information

Yinnian He
Affiliation: Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Email: heyn@mail.xjtu.edu.cn

DOI: https://doi.org/10.1090/S0025-5718-08-02127-3
Keywords: Navier-Stokes equations, mixed finite element, Euler implicit/explicit scheme, Smooth or non-smooth initial data
Received by editor(s): February 26, 2007
Received by editor(s) in revised form: September 17, 2007
Published electronically: May 8, 2008
Additional Notes: This research was subsidized by the NSF of China 10671154 and the National Basic Research Program under the grant 2005CB321703.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society