Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Values of symmetric cube $ L$-functions and Fourier coefficients of Siegel Eisenstein series of degree-3


Author: Dominic Lanphier
Journal: Math. Comp. 80 (2011), 409-428
MSC (2010): Primary 11F67, 11F46, 11F30
DOI: https://doi.org/10.1090/S0025-5718-10-02350-1
Published electronically: April 15, 2010
MathSciNet review: 2728987
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain formulas for certain weighted sums of values of the symmetric square and triple product $ L$-functions. As a consequence, we get exact values at the right critical point for the symmetric square and symmetric cube $ L$-functions attached to certain cuspforms. We also give applications to Fourier coefficients of modular forms.


References [Enhancements On Off] (What's this?)

  • [1] Böcherer, S. Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen, Manuscripta Math. 45 (1984), 273-288. MR 734842 (86b:11037)
  • [2] Böcherer, S. Über die Funktionalgleichung automorpher $ L$-Funktionen zur Siegelschen Modulgruppe, J. Reine Angew Math. 362 (1985), 146-168. MR 809972 (87h:11039)
  • [3] Cohen, H. Sums involving the values at negative integers of $ L$-functions of quadratic characters, Math. Ann. 217 (1975), 271-285. MR 0382192 (52:3080)
  • [4] Datskovsky, B. and Guerzhoy, P. On Ramanujan congruences for modular forms of integral and half-integral weights, Proc. Amer. Math. Soc. 124 no. 8 (1996), 2283-2291. MR 1327004 (96j:11061)
  • [5] Deligne, P. Valeurs de fonctions $ L$ et périodes d'intégrales in ``Automorphic Forms, Representations, and $ L$-functions'' Vol. 2, ed. by A. Borel and W. Casselman, Proc. Symp. Pure Math. 33, Amer. Math. Soc., Providence, RI, 1979, 313-346. MR 546622 (81d:12009)
  • [6] Dummigan, N. Symmetric square $ L$-functions and Shafarevich-Tate groups, Exp. Math. 10:3 (2001), 383-400. MR 1917426 (2003g:11052)
  • [7] Eichler, M. and Zagier, D. ``The Theory of Jacobi Forms'', Progress in Mathematics 55, Boston, Birkhäuser Boston, 1985. MR 781735 (86j:11043)
  • [8] Garrett, P.B. Pullbacks of Eisenstein series and applications, in ``Automorphic Forms of Several Variables'', ed. I. Satake and Y. Morita, Birkhäuser, Boston, 1984, 114-137. MR 763012 (86f:11039)
  • [9] Garrett, P.B. Integral representations of Eisenstein series and $ L$-functions, in ``Number theory, trace formulas and discrete groups'' (Oslo, 1987), Academic Press, Boston, MA, 1989, 241-264. MR 993320 (90e:11073)
  • [10] Garrett, P.B. Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. 125 (1987), 209-235. MR 881269 (88m:11033)
  • [11] Garrett, P.B. On the arithmetic of Siegel-Hilbert cusp forms: Petersson inner products and Fourier coefficients, Invent. Math. 107 (1992), 453-481. MR 1150599 (93e:11060)
  • [12] Garrett, P.B. and Harris, M. Special values of triple product $ L$-functions, Amer. J. Math. 115 (1993), 161-240. MR 1209238 (94e:11058)
  • [13] Heim, B. Congruences for the Ramanujan function and generalized class numbers, Math. Comp. 78 (2009), 431-439. MR 2448715 (2009i:11055)
  • [14] Katsurada, H. An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree 3, Nagoya Math. J. 146 (1997), 199-223. MR 1460959 (98g:11051)
  • [15] Katsurada, H. Special values of the standard zeta functions for elliptic modular forms, Exp. Math. 14:1 (2004), 27-45. MR 2146517 (2006f:11054)
  • [16] Kim, H. and Shahidi, F. Symmetric cube $ L$-functions for $ GL_2$ are entire, Ann. of Math. 150 (1999), 645-662. MR 1726704 (2000k:11065)
  • [17] Kim, H. and Shahidi, F. Holomorphy of Rankin triple $ L$-functions; special values and root numbers for symmetric cube $ L$-functions, Israel J. Math. 120 (2000), 449-466. MR 1809630 (2002c:11055)
  • [18] Klingen, H. ``Introductory lectures on Siegel modular forms'', Cambridge Studies in Advanced Mathematics 20, Cambridge Univ. Press, Cambridge, UK, 1996. MR 1046630 (91a:11021)
  • [19] Maass, H. ``Siegel's modular forms and Dirichlet series'', Lecture Notes in Math. 216, Springer-Verlag, Berlin, 1971. MR 0344198 (49:8938)
  • [20] Mizumoto, S. Special values of triple product $ L$-functions and nearly holomorphic Eisenstein series, Abh. Math. Sem. Univ. Hamburg 70 (2000), 191-210. MR 1809545 (2001k:11085)
  • [21] Ozeki, M. and Washio, T. Table of the Fourier coefficients of Eisenstein series of degree 3, Proc. Japan Acad. 59 Ser. A (1983), 252-255. MR 718614 (85d:11054)
  • [22] Shimura, G. On the periods of modular forms, Math. Ann. 229 (1977), 211-221. MR 0463119 (57:3080)
  • [23] Zagier, D. Modular forms whose Fourier coefficients involve zeta functions of quadratic fields, Lec. Notes in Math. 627 (1977), 105-169. MR 0485703 (58:5525)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11F67, 11F46, 11F30

Retrieve articles in all journals with MSC (2010): 11F67, 11F46, 11F30


Additional Information

Dominic Lanphier
Affiliation: Department of Mathematics, Western Kentucky University, Bowling Green, Kentucky 42101
Email: dominic.lanphier@wku.edu

DOI: https://doi.org/10.1090/S0025-5718-10-02350-1
Received by editor(s): April 20, 2009
Received by editor(s) in revised form: August 27, 2009
Published electronically: April 15, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society