Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On $ L$-functions of quadratic $ \mathbb{Q}$-curves


Authors: Peter Bruin and Andrea Ferraguti
Journal: Math. Comp. 87 (2018), 459-499
MSC (2010): Primary 11G05, 11G40, 11F30
DOI: https://doi.org/10.1090/mcom/3217
Published electronically: June 13, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be a quadratic number field and let $ E$ be a $ \mathbb{Q}$-curve without CM completely defined over $ K$ and not isogenous to an elliptic curve over $ \mathbb{Q}$. In this setting, it is known that there exists a weight $ 2$ newform of suitable level and character, such that $ L(E,s)=L(f,s)L({}^\sigma \! f,s)$, where $ {}^\sigma \! f$ is the unique Galois conjugate of $ f$. In this paper, we first describe an algorithm to compute the level, the character and the Fourier coefficients of $ f$. Next, we show that given an invariant differential $ \omega _E$ on $ E$, there exists a positive integer $ Q=Q(E,\omega _E)$ such that $ L(E,1)/P(E/K)\cdot Q$ is an integer, where $ P(E/K)$ is the period of $ E$. Assuming a generalization of Manin's conjecture, the integer $ Q$ is made effective. As an application, we verify the weak BSD conjecture for some curves of rank two, we compute the $ L$-ratio of a curve of rank zero and we produce relevant examples of newforms of large level.


References [Enhancements On Off] (What's this?)

  • [1] Ahmed Abbes and Emmanuel Ullmo, À propos de la conjecture de Manin pour les courbes elliptiques modulaires, Compositio Math. 103 (1996), no. 3, 269-286 (French, with French summary). MR 1414591
  • [2] Amod Agashe, Kenneth Ribet, and William A. Stein, The Manin constant, Pure Appl. Math. Q. 2 (2006), no. 2, 617-636. MR 2251484, https://doi.org/10.4310/PAMQ.2006.v2.n2.a11
  • [3] A. O. L. Atkin and Wen Ch'ing Winnie Li, Twists of newforms and pseudo-eigenvalues of $ W$-operators, Invent. Math. 48 (1978), no. 3, 221-243. MR 508986, https://doi.org/10.1007/BF01390245
  • [4] Nicolas Billerey, Critères d'irréductibilité pour les représentations des courbes elliptiques, Int. J. Number Theory 7 (2011), no. 4, 1001-1032 (French, with English and French summaries). MR 2812649, https://doi.org/10.1142/S1793042111004538
  • [5] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Springer-Verlag, 1990.
  • [6] Johan Bosman, Peter Bruin, Andrej Dujella, and Filip Najman, Ranks of elliptic curves with prescribed torsion over number fields, Int. Math. Res. Not. IMRN 11 (2014), 2885-2923. MR 3214308
  • [7] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $ \mathbf {Q}$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939 (electronic). MR 1839918, https://doi.org/10.1090/S0894-0347-01-00370-8
  • [8] Henri Carayol, Sur les représentations $ l$-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409-468 (French). MR 870690
  • [9] Henri Carayol, Sur les représentations galoisiennes modulo $ l$ attachées aux formes modulaires, Duke Math. J. 59 (1989), no. 3, 785-801 (French). MR 1046750, https://doi.org/10.1215/S0012-7094-89-05937-1
  • [10] Henri Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
  • [11] J. E. Cremona, Modular symbols for $ \Gamma _1(N)$ and elliptic curves with everywhere good reduction, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 199-218. MR 1142740, https://doi.org/10.1017/S0305004100075307
  • [12] John E. Cremona and Thotsaphon Thongjunthug, The complex AGM, periods of elliptic curves over $ \mathbb{C}$ and complex elliptic logarithms, J. Number Theory 133 (2013), no. 8, 2813-2841. MR 3045217, https://doi.org/10.1016/j.jnt.2013.02.002
  • [13] Henri Darmon, Wiles' theorem and the arithmetic of elliptic curves, Modular forms and Fermat's last theorem (Boston, MA, 1995) Springer, New York, 1997, pp. 549-569. MR 1638495
  • [14] Pierre Deligne, Formes modulaires et représentations $ l$-adiques, Séminaire Bourbaki. Vol. 1968/69: Exposés 347-363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 355, 139-172 (French). MR 3077124
  • [15] Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids $ 1$, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507-530 (1975) (French). MR 0379379
  • [16] Fred Diamond and Jerry Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
  • [17] Tim Dokchitser, Computing special values of motivic $ L$-functions, Experiment. Math. 13 (2004), no. 2, 137-149. MR 2068888
  • [18] T. Dokchitser, computeL, http://www.maths.bris.ac.uk/~matyd/computel/index.html, 2006.
  • [19] Tim Dokchitser, Notes on the parity conjecture, Elliptic curves, Hilbert modular forms and Galois deformations, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2013, pp. 201-249. MR 3184338, https://doi.org/10.1007/978-3-0348-0618-3_5
  • [20] V. G. Drinfeld, Two theorems on modular curves, Funkcional. Anal. i Priložen. 7 (1973), no. 2, 83-84 (Russian). MR 0318157
  • [21] Bas Edixhoven, On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 25-39. MR 1085254
  • [22] Bas Edixhoven, Néron models and tame ramification, Compositio Math. 81 (1992), no. 3, 291-306. MR 1149171
  • [23] Noam D. Elkies, On elliptic $ K$-curves, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 81-91. MR 2058644
  • [24] Jordan S. Ellenberg, $ \mathbb{Q}$-curves and Galois representations, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 93-103. MR 2058645
  • [25] Dorian Goldfeld, On the computational complexity of modular symbols, Math. Comp. 58 (1992), no. 198, 807-814. MR 1122069, https://doi.org/10.2307/2153219
  • [26] Josep González and Joan-C. Lario, $ \mathbf {Q}$-curves and their Manin ideals, Amer. J. Math. 123 (2001), no. 3, 475-503. MR 1833149
  • [27] Benedict H. Gross, Kolyvagin's work on modular elliptic curves, $ L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235-256. MR 1110395, https://doi.org/10.1017/CBO9780511526053.009
  • [28] B. H. Gross, Lectures on the conjecture of Birch and Swinnerton-Dyer, Arithmetic of $ L$-functions, IAS/Park City Math. Ser., vol. 18, Amer. Math. Soc., Providence, RI, 2011, pp. 169-209. MR 2882691
  • [29] Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $ L$-series, Invent. Math. 84 (1986), no. 2, 225-320. MR 833192, https://doi.org/10.1007/BF01388809
  • [30] Xavier Guitart and Jordi Quer, Modular abelian varieties over number fields, Canad. J. Math. 66 (2014), no. 1, 170-196. MR 3150707, https://doi.org/10.4153/CJM-2012-040-2
  • [31] Yuji Hasegawa, $ {\bf Q}$-curves over quadratic fields, Manuscripta Math. 94 (1997), no. 3, 347-364. MR 1485442, https://doi.org/10.1007/BF02677859
  • [32] Kazuya Kato, $ p$-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117-290 (English, with English and French summaries). Cohomologies $ p$-adiques et applications arithmétiques. III. MR 2104361
  • [33] Chandrashekhar Khare and Jean-Pierre Wintenberger, Serre's modularity conjecture. I, Invent. Math. 178 (2009), no. 3, 485-504. MR 2551763, https://doi.org/10.1007/s00222-009-0205-7
  • [34] Chandrashekhar Khare and Jean-Pierre Wintenberger, Serre's modularity conjecture. II, Invent. Math. 178 (2009), no. 3, 505-586. MR 2551764, https://doi.org/10.1007/s00222-009-0206-6
  • [35] V. A. Kolyvagin, Finiteness of $ E({\bf Q})$ and SH $ (E,{\bf Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522-540, 670-671 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 523-541. MR 954295
  • [36] E. Landau, Vorlesungen über Zahlentheorie I, S. Hirzel, 1927.
  • [37] Serge Lang, Number Theory. III: Diophantine Geometry, Encyclopaedia of Mathematical Sciences, vol. 60, Springer-Verlag, Berlin, 1991. MR 1112552
  • [38] The LMFDB Collaboration, The L-functions and modular forms database, http://www.lmfdb.org, 2013, [Online; accessed 16 September 2013].
  • [39] Ju. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19-66 (Russian). MR 0314846
  • [40] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129-162. MR 482230, https://doi.org/10.1007/BF01390348
  • [41] J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177-190. MR 0330174
  • [42] Toshitsune Miyake, Modular Forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004
  • [43] M. Ram Murty and V. Kumar Murty, Mean values of derivatives of modular $ L$-series, Ann. of Math. (2) 133 (1991), no. 3, 447-475. MR 1109350, https://doi.org/10.2307/2944316
  • [44] Jordi Quer, $ {\bf Q}$-curves and abelian varieties of $ {\rm GL}_2$-type, Proc. London Math. Soc. (3) 81 (2000), no. 2, 285-317. MR 1770611, https://doi.org/10.1112/S0024611500012570
  • [45] Kenneth A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1977, pp. 17-51. Lecture Notes in Math., Vol. 601. MR 0453647
  • [46] Kenneth A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43-62. MR 594532, https://doi.org/10.1007/BF01457819
  • [47] Kenneth A. Ribet, Abelian varieties over $ \bf Q$ and modular forms, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 241-261. MR 2058653, https://doi.org/10.1007/978-3-0348-7919-4_15
  • [48] David E. Rohrlich, Modular curves, Hecke correspondence, and $ L$-functions, Modular forms and Fermat's last theorem (Boston, MA, 1995) Springer, New York, 1997, pp. 41-100. MR 1638476
  • [49] J.-P. Serre, Modular forms of weight one and Galois representations, Algebraic number fields: $ L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 193-268. MR 0450201
  • [50] Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517. MR 0236190
  • [51] Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, NJ, 1971. Kanô Memorial Lectures, No. 1. MR 0314766
  • [52] Goro Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523-544. MR 0318162
  • [53] Denis Simon, Computing the rank of elliptic curves over number fields, LMS J. Comput. Math. 5 (2002), 7-17 (electronic). MR 1916919, https://doi.org/10.1112/S1461157000000668
  • [54] W. A. Stein et al., Sage Mathematics Software (Version 6.5), The Sage Development Team, 2015, http://www.sagemath.org.
  • [55] Glenn Stevens, Arithmetic on modular curves, Progress in Mathematics, vol. 20, Birkhäuser Boston, Inc., Boston, MA, 1982. MR 670070
  • [56] John Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 306, 415-440. MR 1610977
  • [57] Andrew Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443-551. MR 1333035, https://doi.org/10.2307/2118559
  • [58] Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553-572. MR 1333036, https://doi.org/10.2307/2118560
  • [59] Shou-Wu Zhang, Arithmetic of Shimura curves, Sci. China Math. 53 (2010), no. 3, 573-592. MR 2608314, https://doi.org/10.1007/s11425-010-0046-2

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11G05, 11G40, 11F30

Retrieve articles in all journals with MSC (2010): 11G05, 11G40, 11F30


Additional Information

Peter Bruin
Affiliation: Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
Email: P.J.Bruin@math.leidenuniv.nl

Andrea Ferraguti
Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
Address at time of publication: DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
Email: af612@cam.ac.uk

DOI: https://doi.org/10.1090/mcom/3217
Keywords: Number fields, $\mathbb{Q}$-curves, $L$-functions, newforms, BSD
Received by editor(s): March 21, 2016
Received by editor(s) in revised form: September 11, 2016
Published electronically: June 13, 2017
Additional Notes: The first author was partially supported by the Swiss National Science Foundation through grants 124737 and 137928, and by the Netherlands Organisation for Scientific Research (NWO) through Veni grant 639.031.346.
The second author was partially supported by Swiss National Science Foundation grant 168459
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society