Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations


Authors: Martin Hutzenthaler, Arnulf Jentzen and Xiaojie Wang
Journal: Math. Comp. 87 (2018), 1353-1413
MSC (2010): Primary 60H35, 65C30
DOI: https://doi.org/10.1090/mcom/3146
Published electronically: March 31, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Exponential integrability properties of numerical approximations are a key tool for establishing positive rates of strong and numerically weak convergence for a large class of nonlinear stochastic differential equations. It turns out that well-known numerical approximation processes such as Euler-Maruyama approximations, linear-implicit Euler approximations, and some tamed Euler approximations from the literature rarely preserve exponential integrability properties of the exact solution. The main contribution of this article is to identify a class of stopped increment-tamed Euler approximations which preserve exponential integrability properties of the exact solution under minor additional assumptions on the involved functions.


References [Enhancements On Off] (What's this?)

  • [1] N. Bou-Rabee and M. Hairer, Nonasymptotic mixing of the MALA algorithm, IMA J. Numer. Anal. 33 (2013), no. 1, 80-110. MR 3020951, https://doi.org/10.1093/imanum/drs003
  • [2] Zdzislaw Brzeźniak, Erich Carelli, and Andreas Prohl, Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing, IMA J. Numer. Anal. 33 (2013), no. 3, 771-824. MR 3081484, https://doi.org/10.1093/imanum/drs032
  • [3] S. G. Cox, M. Hutzenthaler, and A. Jentzen, Local Lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations, arXiv:1309.5595 (2014), 1-84.
  • [4] Giuseppe Da Prato and Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136
  • [5] Steffen Dereich, Andreas Neuenkirch, and Lukasz Szpruch, An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 (2012), no. 2140, 1105-1115. MR 2898556, https://doi.org/10.1098/rspa.2011.0505
  • [6] Philipp Dörsek, Semigroup splitting and cubature approximations for the stochastic Navier-Stokes equations, SIAM J. Numer. Anal. 50 (2012), no. 2, 729-746. MR 2914284, https://doi.org/10.1137/110833841
  • [7] Abdelhadi Es-Sarhir and Wilhelm Stannat, Improved moment estimates for invariant measures of semilinear diffusions in Hilbert spaces and applications, J. Funct. Anal. 259 (2010), no. 5, 1248-1272. MR 2652188, https://doi.org/10.1016/j.jfa.2010.02.017
  • [8] Shizan Fang, Peter Imkeller, and Tusheng Zhang, Global flows for stochastic differential equations without global Lipschitz conditions, Ann. Probab. 35 (2007), no. 1, 180-205. MR 2303947, https://doi.org/10.1214/009117906000000412
  • [9] István Gyöngy and Annie Millet, On discretization schemes for stochastic evolution equations, Potential Anal. 23 (2005), no. 2, 99-134. MR 2139212, https://doi.org/10.1007/s11118-004-5393-6
  • [10] Martin Hairer and Jonathan C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math. (2) 164 (2006), no. 3, 993-1032. MR 2259251, https://doi.org/10.4007/annals.2006.164.993
  • [11] Nikolaos Halidias, A novel approach to construct numerical methods for stochastic differential equations, Numer. Algorithms 66 (2014), no. 1, 79-87. MR 3197358, https://doi.org/10.1007/s11075-013-9724-9
  • [12] Matthias Hieber and Wilhelm Stannat, Stochastic stability of the Ekman spiral, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 1, 189-208. MR 3088441
  • [13] Desmond J. Higham, Xuerong Mao, and Andrew M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal. 40 (2002), no. 3, 1041-1063 (electronic). MR 1949404, https://doi.org/10.1137/S0036142901389530
  • [14] Desmond J. Higham, Xuerong Mao, and Lukasz Szpruch, Convergence, non-negativity and stability of a new Milstein scheme with applications to finance, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), no. 8, 2083-2100. MR 3082312, https://doi.org/10.3934/dcdsb.2013.18.2083
  • [15] Yaozhong Hu, Semi-implicit Euler-Maruyama scheme for stiff stochastic equations, Stochastic analysis and related topics, V (Silivri, 1994) Progr. Probab., vol. 38, Birkhäuser Boston, Boston, MA, 1996, pp. 183-202. MR 1396331
  • [16] Martin Hutzenthaler and Arnulf Jentzen, Convergence of the stochastic Euler scheme for locally Lipschitz coefficients, Found. Comput. Math. 11 (2011), no. 6, 657-706. MR 2859952, https://doi.org/10.1007/s10208-011-9101-9
  • [17] M. Hutzenthaler and A. Jentzen, On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients, arXiv:1401.0295 (2014), 1-41.
  • [18] Martin Hutzenthaler and Arnulf Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, Mem. Amer. Math. Soc. 236 (2015), no. 1112, v+99. MR 3364862, https://doi.org/10.1090/memo/1112
  • [19] Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no. 2130, 1563-1576. MR 2795791, https://doi.org/10.1098/rspa.2010.0348
  • [20] Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, Ann. Appl. Probab. 22 (2012), no. 4, 1611-1641. MR 2985171, https://doi.org/10.1214/11-AAP803
  • [21] Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden, Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations, Ann. Appl. Probab. 23 (2013), no. 5, 1913-1966. MR 3134726, https://doi.org/10.1214/12-AAP890
  • [22] Achim Klenke, Probability theory: A comprehensive course, Universitext, Springer-Verlag London, Ltd., London, 2008. Translated from the 2006 German original. MR 2372119
  • [23] Xue-Mei Li, Strong $ p$-completeness of stochastic differential equations and the existence of smooth flows on noncompact manifolds, Probab. Theory Related Fields 100 (1994), no. 4, 485-511. MR 1305784, https://doi.org/10.1007/BF01268991
  • [24] Wei Liu and Xuerong Mao, Strong convergence of the stopped Euler-Maruyama method for nonlinear stochastic differential equations, Appl. Math. Comput. 223 (2013), 389-400. MR 3116272, https://doi.org/10.1016/j.amc.2013.08.023
  • [25] Xuerong Mao and Lukasz Szpruch, Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients, J. Comput. Appl. Math. 238 (2013), 14-28. MR 2972586, https://doi.org/10.1016/j.cam.2012.08.015
  • [26] G. N. Milstein, E. Platen, and H. Schurz, Balanced implicit methods for stiff stochastic systems, SIAM J. Numer. Anal. 35 (1998), no. 3, 1010-1019 (electronic). MR 1619926, https://doi.org/10.1137/S0036142994273525
  • [27] G. N. Milstein and M. V. Tretyakov, Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients, SIAM J. Numer. Anal. 43 (2005), no. 3, 1139-1154 (electronic). MR 2177799, https://doi.org/10.1137/040612026
  • [28] Andreas Neuenkirch and Lukasz Szpruch, First order strong approximations of scalar SDEs defined in a domain, Numer. Math. 128 (2014), no. 1, 103-136. MR 3248050, https://doi.org/10.1007/s00211-014-0606-4
  • [29] Claudia Prévôt and Michael Röckner, A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. MR 2329435
  • [30] Sotirios Sabanis, A note on tamed Euler approximations, Electron. Commun. Probab. 18 (2013), no. 47, 10. MR 3070913, https://doi.org/10.1214/ECP.v18-2824
  • [31] Sotirios Sabanis, Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients, Ann. Appl. Probab. 26 (2016), no. 4, 2083-2105. MR 3543890, https://doi.org/10.1214/15-AAP1140
  • [32] Henri Schurz, General theorems for numerical approximation of stochastic processes on the Hilbert space $ H_2([0,T],\mu ,\mathbb{R}^d)$, Electron. Trans. Numer. Anal. 16 (2003), 50-69 (electronic). MR 1988720
  • [33] Henri Schurz, Convergence and stability of balanced implicit methods for systems of SDEs, Int. J. Numer. Anal. Model. 2 (2005), no. 2, 197-220. MR 2111748
  • [34] Lukasz Szpruch, Xuerong Mao, Desmond J. Higham, and Jiazhu Pan, Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model, BIT 51 (2011), no. 2, 405-425. MR 2806537, https://doi.org/10.1007/s10543-010-0288-y
  • [35] M. V. Tretyakov and Z. Zhang, A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications, SIAM J. Numer. Anal. 51 (2013), no. 6, 3135-3162. MR 3129758, https://doi.org/10.1137/120902318
  • [36] Xiaojie Wang and Siqing Gan, The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients, J. Difference Equ. Appl. 19 (2013), no. 3, 466-490. MR 3037286, https://doi.org/10.1080/10236198.2012.656617
  • [37] Xicheng Zhang, Stochastic flows and Bismut formulas for stochastic Hamiltonian systems, Stochastic Process. Appl. 120 (2010), no. 10, 1929-1949. MR 2673982, https://doi.org/10.1016/j.spa.2010.05.015

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 60H35, 65C30

Retrieve articles in all journals with MSC (2010): 60H35, 65C30


Additional Information

Martin Hutzenthaler
Affiliation: Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany
Email: martin.hutzenthaler@uni-due.de

Arnulf Jentzen
Affiliation: Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
Email: arnulf.jentzen@sam.math.ethz.ch

Xiaojie Wang
Affiliation: School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, People’s Republic of China
Email: x.j.wang7@csu.edu.cn

DOI: https://doi.org/10.1090/mcom/3146
Keywords: Exponential moments, numerical approximation, stochastic differential equation, Euler scheme, Euler-Maruyama, implicit Euler scheme, tamed Euler scheme, strong convergence rate
Received by editor(s): September 23, 2014
Received by editor(s) in revised form: June 9, 2015, October 8, 2015, February 3, 2016, and November 14, 2016
Published electronically: March 31, 2017
Additional Notes: The third author is the corresponding author
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society