Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 

 

Neumann problem in angular regions with periodic and parabolic perturbations of the boundary


Author: S. A. Nazarov
Translated by: O. A. Khleborodova
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 69 (2008).
Journal: Trans. Moscow Math. Soc. 2008, 153-208
MSC (2000): Primary 35J25; Secondary 35C20
DOI: https://doi.org/10.1090/S0077-1554-08-00173-8
Published electronically: December 24, 2008
MathSciNet review: 2549447
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct and prove asymptotic expansions at infinity for solutions of Neumann problems and matching problems for systems of second order differential equations in regions with corner outlets to infinity. Outside some disc the regions are either periodic or deformed by parabolic inclusions. In addition to logarithmic-polynomial solutions, the asymptotic expansions contain components of the type of boundary layer that either exponentially decay away from the boundary or are localized inside the parabolic inclusions. Operators of the problems become Fredholm operators, and remainders in asymptotic expansions are estimated in scales of function spaces with norms determined by double weight factors and their step distribution. We consider also other types of problems which allow us to apply the developed methods for reduction to a model problem in a sector and for recovery of properties of remainders near perturbed boundary; in particular, we consider the matching problem in regions with irregular points of peak-like inclusion type.


References [Enhancements On Off] (What's this?)

  • 1. Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 0227584
  • 2. N. N. Ural′tseva, N. N. Ural′tseva, and N. N. Ural′tseva (eds.), Some questions of mathematical physics and function theory, Consultants Bureau, New York, 1998. A translation of Some questions of mathematical physics and function theory (Russian), Probl. Mat. Anal., No. 16, S.-Petersburg Gos. Univ., St. Petersburg, 1997; Translation edited by I. N. Rozhkovskaya; J. Math. Sci. (New York) 92 (1998), no. 6. MR 1668363
    S. A. Nazarov, Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators, J. Math. Sci. (New York) 92 (1998), no. 6, 4338–4353. Some questions of mathematical physics and function theory. MR 1668418, https://doi.org/10.1007/BF02433440
  • 3. S. A. Nazarov, Polynomial property of selfadjoint elliptic boundary value problems, and the algebraic description of their attributes, Uspekhi Mat. Nauk 54 (1999), no. 5(329), 77–142 (Russian); English transl., Russian Math. Surveys 54 (1999), no. 5, 947–1014. MR 1741662, https://doi.org/10.1070/rm1999v054n05ABEH000204
  • 4. E. Sánchez-Palencia and P. Suquet, Friction and homogenization of a boundary, Free boundary problems: theory and applications, Vol. I, II (Montecatini, 1981) Res. Notes in Math., vol. 78, Pitman, Boston, MA, 1983, pp. 561–571. MR 714936
  • 5. M. Lobo and M. Pérez, Local problems for vibrating systems with concentrated masses: a review. C.R.Mecanique 331 (2003), 303-317.
  • 6. S. A. Nazarov, Binomial asymptotic behavior of solutions of spectral problems with singular perturbations, Mat. Sb. 181 (1990), no. 3, 291–320 (Russian); English transl., Math. USSR-Sb. 69 (1991), no. 2, 307–340. MR 1049991
  • 7. Y. Amirat, G. A. Chechkin, and R. R. Gadyl′shin, Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary, Zh. Vychisl. Mat. Mat. Fiz. 46 (2006), no. 1, 102–115 (English, with Russian summary); English transl., Comput. Math. Math. Phys. 46 (2006), no. 1, 97–110. MR 2239730, https://doi.org/10.1134/S0965542506010118
  • 8. A. M. Il′in, Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs, vol. 102, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by V. Minachin [V. V. Minakhin]. MR 1182791
  • 9. W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. I, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], vol. 82, Akademie-Verlag, Berlin, 1991 (German). Störungen isolierter Randsingularitäten. [Perturbations of isolated boundary singularities]. MR 1101139
  • 10. V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 0226187
  • 11. V. G. Maz′ja and B. A. Plamenevskiĭ, The coefficients in the asymptotics of solutions of elliptic boundary value problems with conical points, Math. Nachr. 76 (1977), 29–60 (Russian). MR 0601608, https://doi.org/10.1002/mana.19770760103
  • 12. V. G. Maz′ja and B. A. Plamenevskiĭ, The coefficients in the asymptotic expansion of the solutions of elliptic boundary value problems near an edge, Dokl. Akad. Nauk SSSR 229 (1976), no. 1, 33–36 (Russian). MR 0407446
  • 13. Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387
  • 14. V. A. Kozlov, V. G. Maz′ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol. 52, American Mathematical Society, Providence, RI, 1997. MR 1469972
  • 15. S. A. Nazarov, Asymptotic behavior of the solution of the Dirichlet problem in an angular domain with a periodically changing boundary, Mat. Zametki 49 (1991), no. 5, 86–96, 159 (Russian); English transl., Math. Notes 49 (1991), no. 5-6, 502–509. MR 1137177, https://doi.org/10.1007/BF01142647
  • 16. S. A. Nazarov, The Dirichlet problem for an elliptic system with periodic coefficients in a corner domain, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 1 (1990), 32–35, 123 (Russian, with English summary); English transl., Vestnik Leningrad Univ. Math. 23 (1990), no. 1, 33–35. MR 1098480
  • 17. S. A. Nazarov, Asymptotic expansion of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in a rectangle, Mat. Sb. 182 (1991), no. 5, 692–722 (Russian); English transl., Math. USSR-Sb. 73 (1992), no. 1, 79–110. MR 1124104
  • 18. Sergei A. Nazarov, Asymptotics at infinity of the solution to the Dirichlet problem for a system of equations with periodic coefficients in an angular domain, Russian J. Math. Phys. 3 (1995), no. 3, 297–326. MR 1370627
  • 19. S. A. Nazarov and A. S. Slutskiĭ, Asymptotic behavior of solutions of boundary value problems for an equation with rapidly oscillating coefficients in a domain with a small cavity, Mat. Sb. 189 (1998), no. 9, 107–142 (Russian, with Russian summary); English transl., Sb. Math. 189 (1998), no. 9-10, 1385–1422. MR 1680848, https://doi.org/10.1070/SM1998v189n09ABEH000353
  • 20. F. Blanc and S. A. Nazarov, Asymptotics of solutions to the Poisson problem in a perforated domain with corners, J. Math. Pures Appl. (9) 76 (1997), no. 10, 893–911 (English, with English and French summaries). MR 1489944, https://doi.org/10.1016/S0021-7824(97)89977-1
  • 21. Gabriel Caloz, Martin Costabel, Monique Dauge, and Grégory Vial, Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer, Asymptot. Anal. 50 (2006), no. 1-2, 121–173. MR 2286939
  • 22. D. Leguillon and E. Sánchez-Palencia, Computation of singular solutions in elliptic problems and elasticity, John Wiley & Sons, Ltd., Chichester; Masson, Paris, 1987. MR 995254
  • 23. A. B. Movchan and S. A. Nazarov, Asymptotic behavior of the stress-strained state near sharp inclusions, Dokl. Akad. Nauk SSSR 290 (1986), no. 1, 48–51 (Russian). MR 857872
  • 24. -, Stress-deformed states in the vertex of a sharp inclusion. Mekh. Tverdogo Tela, 1986, no. 3, 155-163. (Russian)
  • 25. -, Asymptotics of a stress-deformed state near a spatial pique-like inclusion. Mekh. Kompoz. Materialov, 1985, no. 5, pp. 792-800. (Russian)
  • 26. Serguei A. Nazarov, Asymptotics of the solution to the Neumann problem in a domain with singular point of peak exterior type, Russian J. Math. Phys. 4 (1996), no. 2, 217–250. MR 1414884
  • 27. V. G. Maz′ya, S. A. Nazarov, and B. A. Plamenevskiĭ, Elliptic boundary value problems in domains of the type of the exterior of a cusp, Linear and nonlinear partial differential equations. Spectral asymptotic behavior, Probl. Mat. Anal., vol. 9, Leningrad. Univ., Leningrad, 1984, pp. 105–148 (Russian). MR 772047, https://doi.org/10.1090/trans2/123
  • 28. S. A. Nazarov, Estimates near an edge for the solution of the Neumann problem for an elliptic system, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 1 (1988), 37–42, 117 (Russian, with English summary); English transl., Vestnik Leningrad Univ. Math. 21 (1988), no. 1, 52–59. MR 946462
  • 29. S. A. Nazarov and B. A. Plamenevskiĭ, The Neumann problem for selfadjoint elliptic systems in a domain with a piecewise-smooth boundary, Trudy Leningrad. Mat. Obshch. 1 (1990), 174–211, 246–247 (Russian). MR 1104210
  • 30. M. S. Agranovič and M. I. Višik, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk 19 (1964), no. 3 (117), 53–161 (Russian). MR 0192188
  • 31. V. G. Maz′ja and B. A. Plamenevskiĭ, Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points, Elliptische Differentialgleichungen (Meeting, Rostock, 1977) Wilhelm-Pieck-Univ., Rostock, 1978, pp. 161–190 (Russian). MR 540196
  • 32. V. G. Maz′ja and B. A. Plamenevskiĭ, Elliptic boundary value problems on manifolds with singularities, Problems in mathematical analysis, No. 6: Spectral theory, boundary value problems (Russian), Izdat. Leningrad. Univ., Leningrad, 1977, pp. 85–142, 203 (Russian). MR 0509430
  • 33. S. A. Nazarov, Asymptotic behavior with respect to a parameter of the solution to a boundary value problem that is elliptic in the sense of Agranovič-Višik in a domain with conical points, Boundary value problems. Spectral theory (Russian), Probl. Mat. Anal., vol. 7, Leningrad. Univ., Leningrad, 1979, pp. 146–167, 243–244 (Russian). MR 559107
  • 34. V. A. Nikiškin, Singularities of the solution of the Dirichlet problem for a second-order equation in the neighborhood of an edge, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1979), 51–62, 103 (Russian, with English summary). MR 531648
  • 35. Vladimir Gilelevič Maz′ja and Jürgen Rossmann, Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten, Math. Nachr. 138 (1988), 27–53 (German). MR 975198, https://doi.org/10.1002/mana.19881380103
  • 36. S. A. Nazarov, Nonselfadjoint elliptic problems with the polynomial property in domains possessing cylindrical outlets to infinity, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 249 (1997), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 29, 212–230, 316–317 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 101 (2000), no. 5, 3512–3522. MR 1698519, https://doi.org/10.1007/BF02680148
  • 37. S. A. Nazarov, The Vishik-Lyusternik method for elliptic boundary value problems in regions with conic points. I. Problem in a cone, Sibirsk. Mat. Zh. 22 (1981), no. 4, 142–163, 231 (Russian). MR 624412
    S. A. Nazarov, The Vishik-Lyusternik method for elliptic boundary value problems in regions with conic points. II. Problem in a bounded domain, Sibirsk. Mat. Zh. 22 (1981), no. 5, 132–152, 223 (Russian). MR 632823
  • 38. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35–92. MR 0162050, https://doi.org/10.1002/cpa.3160170104
  • 39. V. A. Solonnikov, General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. I, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 665–706 (Russian). MR 0211070
  • 40. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
  • 41. O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985. Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. MR 793735
  • 42. V. A. Kondrat′ev and O. A. Oleĭnik, Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities, Uspekhi Mat. Nauk 43 (1988), no. 5(263), 55–98, 239 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 5, 65–119. MR 971465, https://doi.org/10.1070/RM1988v043n05ABEH001945
  • 43. Ja. A. Roĭtberg and Z. G. Šeftel′, General boundary-value problems for elliptic equations with discontinuous coefficients, Dokl. Akad. Nauk SSSR 148 (1963), 1034–1037 (Russian). MR 0146507

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2000): 35J25, 35C20

Retrieve articles in all journals with MSC (2000): 35J25, 35C20


Additional Information

S. A. Nazarov
Affiliation: St. Petersburg Branch, Institute of Machine Behavior, Russian Academy of Sciences, St. Petersburg, Russia
Email: serna@snark.ipme.ru

DOI: https://doi.org/10.1090/S0077-1554-08-00173-8
Published electronically: December 24, 2008
Additional Notes: The work was financially supported by the Netherlands Organization for Scientific Research (NWO) and the Russian Fund for Scientific Research (RFFI), joint project 047.017.020.
Article copyright: © Copyright 2008 American Mathematical Society