Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)



Real-analytic solutions of the nonlinear Schrödinger equation

Author: A. V. Domrin
Translated by: Christopher Hollings
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 75 (2014), vypusk 2.
Journal: Trans. Moscow Math. Soc. 2014, 173-183
MSC (2010): Primary 35Q55, 37K15
Published electronically: November 5, 2014
MathSciNet review: 3308608
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish that the Riemann problem on the factorization of formal matrix-valued Laurent series subject to unitary symmetry has a solution. As an application, we show that any local real-analytic solution (in $ x$ and $ t$) of the focusing nonlinear Schrödinger equation has a real-analytic extension to some strip parallel to the $ x$-axis and that in each such strip there exists a solution that cannot be extended further.

References [Enhancements On Off] (What's this?)

  • 1. V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Eksp. Teor. Fiz. 61 (1971), no. 1, 118-134; English transl., Soviet Physics: J. Exp.Theor. Phys. 34 (1972), no. 1, 62-69. MR 0406174 (53:9966)
  • 2. L. A. Takhtadzhyan and L. D. Faddeev, A Hamiltonian approach to the theory of solitons, Nauka, Moscow, 1986. (Russian) MR 889051 (89m:58102)
  • 3. N. N. Akhmediev and A. Ankevich, Solitons: nonlinear pulses and beams, Chapman and Hall, London, 1997; Russian transl., Fizmatlit, Moscow, 2003.
  • 4. A. R. Osborne, Classification of homoclinic rogue wave solutions of the nonlinear Schrödinger equation, Nat.Hazards Earth Syst. Sci. Discuss. 2 (2014), 897-933.
  • 5. A. O. Smirnov and G. M. Golovachev, Three-phase solutions of the nonlinear Schrödinger equation in terms of elliptic functions, Nelineinaya dinamika 9 (2013), no. 3, 389-407. (Russian)
  • 6. A. V. Domrin, The Riemann problem and matrix-valued potentials with a convergent Baker-Akhiezer function, Teoret. Matem. Fiz. 144 (2005), no. 3, 453-471; English transl., Theoret. Math. Phys. 144 (2005), no. 3, 1264-1278. MR 2191841 (2006g:30068)
  • 7. A. V. Domrin, Meromorphic extension of solutions of soliton equations, Izv. Russ. Akad. Nauk. Ser. Mat.74 (2010), no. 3, 23-44; English transl., Izv. Math.74 (20100, no. 3, 461-480. MR 2682370 (2012a:37149)
  • 8. I. V. Cherednik, Regularity of ``finite-zone'' solutions of integrable matrix differential equations, Dokl. Akad.Nauk SSSR 266 (1982), no. 3, 593-597; English transl., Soviet Phys. Dokl. 27 (1982), no. 9, 716-718. MR 678161 (84f:35123)
  • 9. I. Ts. Gokhberg and M. G. Krein, Systems of integral equations on the half-line with kernels depending on the difference of the arguments, Uspekhi Mat. Nauk 13 (1958), no. 2, 3-72. (Russian) MR 0102720 (21:1506)
  • 10. A. V. Domrin, Remarks on a local version of the method of the inverse scattering problem, Trudy Mat. Inst. Steklova 253 (2006), 46-60; English transl., Proc. Steklov Inst.Math. 253 (2006), no. 2, 37-50. MR 2338686 (2008k:37149)
  • 11. F. Calogero and A. Degasperis, Spectral transforms and solitons, Tools to solve and investigate nonlinear evolution equations, North-Holland Publishing Co., Amsterdam-New York, 1982; Russian transl., Mir, Moscow, 1985. MR 831656 (87g:35196)
  • 12. A. R. Its, A. V. Rybin, and M. A. Sall', Exact integration of the nonlinear Schrödinger equation, Teoret. Matem.Fiz. 74 (1988), no. 1, 29-45; English transl., Theoret.Math. Phys. 74 (1988), no. 1, 20-32. MR 940459 (89h:35295)
  • 13. A. N. W. Hone, Crum transformation and rational solutions of the non-focusing nonlinear Schrödinger equation, J.Phys. A 30 (1997), 7473-7483. MR 1603403 (98i:35178)
  • 14. A. V. Domrin, On holomorphic solutions of equations of Korteweg-de Vries type, Trudy Mosk. Mat. Obshch.73 (2012), no. 2, 241-257; English transl., Trans. Moscow Math. Soc. 73 (2012), 193-206. MR 3184975
  • 15. A. V. Komlov, On the poles of Picard potentials, Trudy Mosk. Mat. Obshch. 71 (2010), 270-282; English transl., Trans. Moscow Math. Soc. 71 (2010), 241-250. MR 2760046 (2012e:34244)
  • 16. W. Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973; Russian transl., Mir, Moscow, 1975. MR 0458106 (56:16309)
  • 17. R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. II: Partial Differential Equations, Interscience Publishers, New York-London, 1962; Russian transl., Mir, Moscow, 1964. MR 0140802 (25:4216)

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 35Q55, 37K15

Retrieve articles in all journals with MSC (2010): 35Q55, 37K15

Additional Information

A. V. Domrin
Affiliation: Mechanics and Mathematics Faculty, Moscow State University

Keywords: Nonlinear Schr\"odinger equation, local inverse scattering problem method, analytic extension
Published electronically: November 5, 2014
Additional Notes: This work was supported by the Russian Foundation for Basic Research (grants 14-01-00709-a, 13-01-00622-a, 13-01-12417-ofi-m) and by a grant from the Simons Foundation.
Article copyright: © Copyright 2014 A V. Domrin

American Mathematical Society