Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)



Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube

Author: S. A. Nazarov
Translated by: V. E. Nazaikinskii
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 76 (2015), vypusk 1.
Journal: Trans. Moscow Math. Soc. 2015, 1-53
MSC (2010): Primary 35J25; Secondary 35B25, 35B40, 35B45, 35P20, 35S05
Published electronically: November 17, 2015
MathSciNet review: 3467259
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct and justify asymptotic representations for the eigenvalues and eigenfunctions of boundary value problems for the Laplace operator in a three-dimensional domain $ \Omega (\varepsilon )=\Omega \setminus \Bar {\Gamma }_\varepsilon $ with a thin singular set $ \Gamma _\varepsilon $ lying in the  $ c\varepsilon $-neighborhood of a simple smooth closed contour $ \Gamma $. We consider the Dirichlet problem, a mixed boundary value problem with the Neumann conditions on  $ \partial \Gamma _\varepsilon $, and also a spectral problem with lumped masses on  $ \Gamma _\varepsilon $. The asymptotic representations are of diverse character: we find an asymptotic series in powers of the parameter $ \vert{\ln \varepsilon }\vert^{-1}$ or  $ \varepsilon $. The most comprehensive and complicated analysis is presented for the lumped mass problem; namely, we sum the series in powers of $ \vert{\ln \varepsilon }\vert^{-1}$ and obtain an asymptotic expansion with the leading term holomorphically depending on  $ \vert{\ln \varepsilon }\vert^{-1}$ and with the remainder $ O(\varepsilon ^\delta )$, $ \delta \in (0,1)$. The main role in asymptotic formulas is played by solutions of the Dirichlet problem in $ \Omega \setminus \Gamma $ with logarithmic singularities distributed along the contour $ \Gamma $.

References [Enhancements On Off] (What's this?)

  • 1. V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain, Probl. Mat. Anal. 8 (1981), 72-153, 222-223, Leningrad. Univ., Leningrad, 1981. (Russian) MR 658154 (84c:35037)
  • 2. W. G. Mazja, S. A. Nazarov, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, Bd. 1, 2, Akademie-Verlag, Berlin, 1991; English transl., V. Maz'ya , S. Nazarov, and B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, vol. 1, 2, Birkhäuser, Basel, 2000. MR 1101139 (92g:35059; MR1186211 (93j:35025))
  • 3. V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 2, 347-371; English transl., Math. USSR-Izv. 24 (1985), no. 2, 321-345. MR 740795 (86b:35152)
  • 4. A. Campbell and S. A. Nazarov, Une justification de la méthode de raccordement des développements asymptotiques appliquée à un problème de plaque en flexion. Estimation de la matrice d'impedance, J. Math. Pures Appl. 76 (1997), no. 1, 15-54. (French) MR 1429996 (98f:73025)
  • 5. A. Campbell and S. A. Nazarov, An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance, RAIRO Model. Math. Anal. Numer. 32 (1998), no. 5, 579-610. MR 1643481 (99g:73022)
  • 6. G. Pólya and G. Szégő, Isoperimetric inequalities of mathematical physics, Ann. of Math. Studies, no. 27, Princeton University Press, Princeton, NJ, 1951. MR 0043486 (13:270d)
  • 7. N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966; English transl., Die Grundlehren der mathematischen Wissenschaften, vol. 180, Springer, Berlin-Heidelberg-New York, 1972. MR 0350027 (50:2520)
  • 8. S. A. Nazarov, Asymptotics of the eigenvalues of the Neumann problem under mass concentration on a thin toroidal set, Vestn. SPbGU Ser. 1 (2006), no. 3, 43-53. (Russian)
  • 9. M. V. Fedoryuk, The Dirichlet problem for the Laplace operator in the exterior of a thin solid of revolution, Trudy Sem. S. L. Soboleva (1980), no. 1, 113-131. (Russian) MR 631695 (83b:31005)
  • 10. M. V. Fedoryuk, Asymptotics of the solution of the Dirichlet problem for the Laplace and Helmholtz equations in the exterior of a slender cylinder, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 167-186; English transl., Math. USSR-Izv. 18 (1982), no. 1, 145-161. MR 607581 (82d:35027)
  • 11. V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, On the asymptotic behavior of the solutions to the Dirichlet problem in a three-dimensional domain with a cut-out thin body, Dokl. Akad. Nauk SSSR 256 (1981), no. 1, 37-39; English transl., Soviet Math., Dokl. 23 (1981), no. 1, 32-35. MR 599097 (83d:35042)
  • 12. V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, Asymptotics of solutions of the Dirichlet problem in a domain with a truncated thin tube, Mat. Sb. 116 (1981), no. 2, 187-217; English transl., Math. USSR-Sb. 44 (1983), no. 2, 167-194. MR 637860 (83e:35046b)
  • 13. I. S. Zorin and S. A. Nazarov, The strain-stress state of an elastic space with a thin toroidal inclusion, Mekh. Tverd. Tela (1985), no. 3, 79-86. (Russian)
  • 14. S. A. Nazarov, Averaging of boundary value problems in a domain containing a thin cavity with periodically varying cross-section, Trudy Moskov. Mat. Obshch. 53 (1990), 98-129; English transl., Trans. Mosc. Math. Soc. 53 (1991), 101-134. MR 1097994 (93b:35031)
  • 15. S. A. Nazarov and M. V. Paukshto, Discrete models and homogenization in problems of the elastic theory, Leningrad University, Leningrad, 1984. (Russian)
  • 16. V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, Homogeneous solutions of the Dirichlet problem in the exterior of a thin cone, Dokl. Akad. Nauk SSSR 266 (1982), no. 2, 281-284; English transl., Soviet Math. Dokl. 26 (1982), 320-323. MR 672858 (84c:35040)
  • 17. V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone, Mat. Sb. 122 (1983), no. 4, 435-457; English transl., Math. USSR-Sb. 50 (1985), no. 2, 415-437. MR 725451 (85h:35074)
  • 18. N. V. Movchan, Oscillations of elastic bodies with small holes, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. (1989), no. 1, 33-37; English transl., Vestnik Leningrad Univ. Math. 22 (1989), no. 1, 50-55. MR 1021476 (90i:73032)
  • 19. A. Campbell and S. A. Nazarov, Asymptotics of eigenvalues of a plate with small clamped zone, Positivity 5 (2001), no. 3, 275-295. MR 1836750 (2002e:35047)
  • 20. E. Sánchez-Palencia, Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses, Lect. Notes Phys. 195 (1984), 346-368. MR 755735 (85m:73010)
  • 21. E. Sánchez-Palencia and P. Suquet, Friction and homogenization of a boundary, in Free boundary problems: theory and applications, Pitman, London, 1983, pp. 561-571. MR 714936 (86b:73036)
  • 22. O. A. Oleinik , J. Sanchez-Hubert, and G. A. Yosifian, On vibrations of a membrane with concentrated masses, Bull. Sci. Math. 115 (1991), no. 1, 1-27. MR 1086936 (92a:73021)
  • 23. S. A. Nazarov, On a problem of Sánchez-Palencia with Neumann boundary conditions, Izv. Vyssh. Uchebn. Zaved. Mat. (1989), no. 11, 60-66; English transl., Soviet Math. (Iz. VUZ) 33 (1989), no. 11, 73-78. MR 1045104 (91k:35187)
  • 24. Yu. D. Golovatyi, S. A. Nazarov, and O. A. Oleinik, Asymptotic expansions of eigenvalues and eigenfunctions of problems on oscillations of a medium with concentrated perturbations, Trudy Mat. Inst. Steklov. 192 (1990), 42-60; English transl., Proc. Steklov Inst. Math. (1992), no. 3, 43-63. MR 1097888 (92b:35113)
  • 25. S. A. Nazarov, Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions, RAIRO Model. Math. Anal. Numer. 27 (1993), no. 6, 777-799. MR 1246999 (94i:35147)
  • 26. J. Caínzos, E. Pérez, and M. Vilasánchez, Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses, Indiana Univ. Math. J. 56 (2007), no. 4, 1939-1987. MR 2354704 (2008k:35070)
  • 27. M. Lobo and E. Pérez, Local problems for vibrating systems with concentrated masses: a review, C. R. Mecánique 331 (2003), no. 4, 303-317.
  • 28. E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, vol. 127, Springer, Berlin-New York, 1980. MR 578345 (82j:35010)
  • 29. J. Sanchez-Hubert and E. Sanchez-Palencia, Vibration and coupling of continuous systems. Asymptotic methods, Springer, Heidelberg, 1989. MR 996423 (91c:00018)
  • 30. O. A. Oleinik, G. A. Iosif'yan, and A. S. Shamaev, Mathematical problems in the theory of strongly inhomogeneous elastic media, Izd. Moskov. Univ., Moscow, 1990. (Russian) MR 1115306 (92i:73009)
  • 31. S. A. Nazarov and B. A. Plamenevskii, Selfadjoint elliptic problems: scattering and polarization operators on the edges of the boundary, Algebra i analiz 6 (1994), no. 4, 157-186; English transl., St. Petersburg Math. J. 6 (1995), no. 4, 839-863 MR 1304098 (95j:35060)
  • 32. S. A. Nazarov and B. A. Plamenevskii, Elliptic problems in domains with piecewise smooth boundaries, Nauka, Moscow, 1991; English transl., Walter de Gruyter, Berlin-New York, 1994. MR 1283387 (95h:35001)
  • 33. V. I. Smirnov, A course of higher mathematics, vol. 2, Nauka, Moscow, 1961. (Russian). MR 0125182 (23:A2487)
  • 34. Yu. Nagel, On equivalent norms in the function spaces $ H^\mu $, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. (1974), no. 7, 41-47. (Russian) MR 0355579 (50:8053)
  • 35. L. Hörmander, Linear Partial Differential Operators, Grundlehren Math. Wiss., Springer, Berlin-New York, 1969. MR 0248435 (40:1687)
  • 36. M. S. Birman and M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Leningrad. Univ., Leningrad, 1980; English transl., Mathematics and Its Applications, Soviet Series, vol. 5, Kluwer, Dordrecht, 1987. MR 609148 (82k:47001)
  • 37. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products, Nauka, Moscow, 1971; English transl., Academic Press, New York, 1980.
  • 38. V. G. Maz'ya and B. A. Plamenevskii, On the ellipticity of boundary value problems in points with piecewise smooth boundary, in Proceedings of Symposium on Mechanics of Solids and Related Problems in Analysis, Tbilisi, Metsniereba, 1973, vol. 1, 171-181. (Russian)
  • 39. V. A. Kondrat'ev, Singularities of a solution of Dirichlet's problem for a second-order elliptic equation in the neighborhood of an edge, Differ. Uravn. 13 (1977), no. 11, 2026-2032; English transl., Differ. Equations 13 (1977), no. 11, 1411-1415. MR 0486987 (58:6668)
  • 40. V. A. Nikishkin, Singularities of the solution to the Dirichlet problem for a second-order equation in a neighborhood of an edge, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1979), no. 2, 51-62; English transl., Mosc. Univ. Math. Bull. 34 (1979), no. 2, 53-64. MR 531648 (80h:35046)
  • 41. V. G. Maz'ja and J. Rossmann, Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten, Math. Nachr. 138 (1988), 27-53. (German) MR 975198 (90a:35079)
  • 42. S. A. Nazarov and B. A. Plamenevskii, Selfadjoint elliptic problems with radiation conditions on the edges of the boundary, Algebra i Analiz 4 (1992), no. 3, 196-225; English transl., St. Petersburg Math. J. 4 (1993), no. 3, 569-594. MR 1190778 (93k:35080)
  • 43. S. A. Nazarov and B. A. Plamenevskii, Elliptic problems with radiation conditions on the edges of the boundary, Mat. Sb. 183 (1992), no. 10, 13-44; English transl., Russian Acad. Sci. Sb. Math. 77 (1994), no. 1, 149-176. MR 1202790 (94b:35091)
  • 44. V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obshch. 16 (1967), 209-292; English transl., Trans. Mosc. Math. Soc. 16 (1967), 227-313. MR 0226187 (37:1777)
  • 45. A. Pazy, Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rational Mech. Anal. 24 (1967), 193-218. MR 0209618 (35:515)
  • 46. S. A. Nazarov, Polynomial property of selfadjoint elliptic boundary value problems, and the algebraic description of their attributes, Uspekhi Mat. Nauk 54 (1999), no. 5 (329), 77-142; English transl., Russian Math. Surveys 54 (1999), no. 5, 947-1014. MR 1741662 (2001k:35073)
  • 47. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vols. 1 and 2, Dunod, Paris, 1968; English transl., Springer, Berlin, 1968. MR 0247243 (40:512), MR 0247244 (40:513)
  • 48. O. A. Ladyzhenskaya, Boundary value problems of mathematical physics, Nauka, Moscow, 1973; English transl., Applied Mathematical Sciences, vol. 49, Springer, Berlin-Heidelberg-New York, 1985. MR 793735 (87f:35001)
  • 49. A. M. Il'in, A boundary value problem for the second order elliptic equation in a domain with a narrow slit. 2. Domain with a small cavity., Mat. Sb. 103(145) (1977), no. 2, 265-284; English transl., Math. USSR-Sb. 32 (1977), no. 2, 227-244. MR 0442460 (56:842)
  • 50. M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B .Rutitskii, and V. Ya. Stetsenko, Approximate solution of operator equations, Nauka, Moscow, 1969; English transl., Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics, Wolters-Noordhoff Publishing, Groningen, 1972. MR 0385655 (52:6515)
  • 51. M. Van Dyke, Perturbation methods in fluid mechanics, Academic, New York, 1964. MR 0176702 (31:974)
  • 52. A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Nauka, Moscow, 1989; English transl., Transl. of Math. Monographs, vol. 102, Amer. Math. Soc., Providence, RI, 1992. MR 1007834 (90i:35062)
  • 53. M. I. Vishik and L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Uspekhi Mat. Nauk 12 (1957), no. 5 (77), 3-122. (Russian) MR 0096041 (20:2539)
  • 54. S. A. Nazarov, Asymptotic analysis of thin plates and rods, vol. 1. Dimension reduction and integral estimates, Nauchn. kniga, Novosibirsk, 2001. (Russian)
  • 55. A. D. Aleksandrov and N. Yu. Netsvetaev, Geometry, Nauka, Moscow, 1990. (Russian) MR 1129460 (92k:51001)
  • 56. I. V. Kamotskii and S. A. Nazarov, On eigenfunctions localized near the edge of a thin domain, Probl. Mat. Analiza 19 (1999), 105-148. (Russian)
  • 57. S. A. Nazarov, Localization effects for eigenfunctions near to the edge of a thin domain, Mathematica Bohemica 127 (2002), no. 2, 283-292. MR 1981533 (2004e:35166)
  • 58. L. Friedlander and M. Solomyak, On the spectrum of narrow periodic waveguides, Russ. J. Math. Phys. 15 (2008), no. 2, 238-242. MR 2410832 (2009b:35310)
  • 59. D. Borisov and P. Freitas, Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin planar domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 2, 547-560. MR 2504043 (2010b:35059)
  • 60. S. A. Nazarov, Spectral properties of a thin layer with a doubly periodic family of thinning regions, Teoret. Mat. Fiz. 174 (2013), no. 3, 398-415; English transl., Theoret. and Math. Phys. 174 (2013), no. 3, 343-359. MR 3171515
  • 61. S. A. Nazarov, Localization of the eigenfunctions of the Dirichlet problem in thin polyhedra near the vertices, Sibirsk. Mat. Zh. 54 (2013), no. 3, 655-672; English transl., Sib. Math. J. 54 (2013), no. 3, 517-532. MR 3112622
  • 62. S. A. Nazarov and E. Pérez, New asymptotic effects for the spectrum of problems on concentrated masses near the boundary, C. R. Mécanique 337 (2009), no. 8, 585-590.

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 35J25, 35B25, 35B40, 35B45, 35P20, 35S05

Retrieve articles in all journals with MSC (2010): 35J25, 35B25, 35B40, 35B45, 35P20, 35S05

Additional Information

S. A. Nazarov
Affiliation: Laboratory of Nanomanufacturing, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Mathematics and Mechanics Faculty, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Mathematical Methods in Mechanics of Materials, Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia

Keywords: Eigenvalue and eigenfunction asymptotics, convergence theorem, singular perturbation of a domain, thin toroidal cavity, Dirichlet and Neumann problems, lumped mass.
Published electronically: November 17, 2015
Additional Notes: Supported by grant no. 6.37.671.2013 from St. Petersburg State University.
Article copyright: © Copyright 2015 S. A. Nazarov

American Mathematical Society