Some results on tame disks and spheres in
Authors:
P. H. Doyle and J. G. Hocking
Journal:
Proc. Amer. Math. Soc. 11 (1960), 832836
MSC:
Primary 54.78
MathSciNet review:
0126839
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
Ralph
H. Fox and Emil
Artin, Some wild cells and spheres in threedimensional space,
Ann. of Math. (2) 49 (1948), 979–990. MR 0027512
(10,317g)
 [2]
R.
H. Bing, Locally tame sets are tame, Ann. of Math. (2)
59 (1954), 145–158. MR 0061377
(15,816d)
 [3]
R.
H. Bing, Approximating surfaces with polyhedral ones, Ann. of
Math. (2) 65 (1957), 465–483. MR 0087090
(19,300f)
 [4]
P.
H. Doyle, Tame triods in 3space, Proc. Amer. Math. Soc. 10 (1959), 656–658
(German). MR
0111002 (22 #1870), http://dx.doi.org/10.1090/S00029939195901110023
 [5]
, Unions of cell pairs in , Pacific J. Math. (to appear).
 [6]
P.
H. Doyle and J.
G. Hocking, A note on piercing a disk, Proc. Amer. Math. Soc. 10 (1959), 633–636. MR 0126838
(23 #A4132), http://dx.doi.org/10.1090/S00029939195901268382
 [7]
O.
G. Harrold Jr., H.
C. Griffith, and E.
E. Posey, A characterization of tame curves in
threespace, Trans. Amer. Math. Soc. 79 (1955), 12–34. MR 0091457
(19,972c), http://dx.doi.org/10.1090/S00029947195500914574
 [8]
O.
G. Harrold Jr. and E.
E. Moise, Almost locally polyhedral spheres, Ann. of Math. (2)
57 (1953), 575–578. MR 0053504
(14,784c)
 [9]
O. G. Harrold, Locally peripherally unknotted surfaces in , Ann. of Math. vol. 59 (1959) pp. 276290.
 [10]
Edwin
E. Moise, Affine structures in 3manifolds. V. The triangulation
theorem and Hauptvermutung, Ann. of Math. (2) 56
(1952), 96–114. MR 0048805
(14,72d)
 [11]
Edwin
E. Moise, Affine structures in 3manifolds. VII. Disks which are
pierced by intervals, Ann. of Math. (2) 58 (1953),
403–408. MR 0058208
(15,337b)
 [12]
Edwin
E. Moise, Affine structures in 3manifolds. VIII. Invariance of the
knottypes; local tame imbedding, Ann. of Math. (2)
59 (1954), 159–170. MR 0061822
(15,889g)
 [13]
E. E. Posey, Almost polyhedral cells in euclidean space, Thesis, University of Tennessee, 1954.
 [1]
 E. Artin and R. H. Fox, Some wild cells and spheres in threedimensional space, Ann. of Math. vol. 49 (1948) pp. 979990. MR 0027512 (10:317g)
 [2]
 R. H. Bing, Locally tame sets are tame, Ann. of Math. vol. 59 (1954) pp. 145158. MR 0061377 (15:816d)
 [3]
 , Approximating surfaces with polyhedral ones, Ann. of Math. vol. 65 (1957) pp. 456483. MR 0087090 (19:300f)
 [4]
 P. H. Doyle, Tame triods in space, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 656658. MR 0111002 (22:1870)
 [5]
 , Unions of cell pairs in , Pacific J. Math. (to appear).
 [6]
 P. H. Doyle and J. G. Hocking, A note on piercing a disk, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 633636. MR 0126838 (23:A4132)
 [7]
 O. G. Harrold, H. C. Griffith, and E. E. Posey, A characterization of tame curves in threespace, Trans. Amer. Math. Soc. vol. 79 (1955) pp. 1234. MR 0091457 (19:972c)
 [8]
 O. G. Harrold and E. E. Moise, Almost locally polyhedral spheres, Ann. of Math. vol. 57 (1953) pp. 575578. MR 0053504 (14:784c)
 [9]
 O. G. Harrold, Locally peripherally unknotted surfaces in , Ann. of Math. vol. 59 (1959) pp. 276290.
 [10]
 E. E. Moise, Affine structures in manifolds V. The triangulation theorem and Hauptvermutung, Ann. of Math. vol. 56 (1952) pp. 96114. MR 0048805 (14:72d)
 [11]
 , Affine structures in manifolds VII. Disks which are pierced by intervals, Ann. of Math. vol. 58 (1953) pp. 403408. MR 0058208 (15:337b)
 [12]
 , Affine structures in manifolds VIII. Invariance of the knottypes; local tame imbedding, Ann. of Math. vol. 59 (1954) pp. 159170. MR 0061822 (15:889g)
 [13]
 E. E. Posey, Almost polyhedral cells in euclidean space, Thesis, University of Tennessee, 1954.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
54.78
Retrieve articles in all journals
with MSC:
54.78
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939196001268392
PII:
S 00029939(1960)01268392
Article copyright:
© Copyright 1960
American Mathematical Society
