Cartwright's theorem on functions bounded at the integers

Authors:
H. C. Liu and A. J. Macintyre

Journal:
Proc. Amer. Math. Soc. **12** (1961), 460-462

MSC:
Primary 30.55

DOI:
https://doi.org/10.1090/S0002-9939-1961-0125222-4

MathSciNet review:
0125222

Full-text PDF

References | Similar Articles | Additional Information

**[1]**R. P. Boas Jr.,*Entire functions bounded on a line*, Duke Math. J.**6**(1940), 148–169. MR**0001295****[2]**Ralph Philip Boas Jr.,*Entire functions*, Academic Press Inc., New York, 1954. MR**0068627****[3]**R. P. Boas Jr. and A. C. Schaeffer,*A theorem of Cartwright*, Duke Math. J.**9**(1942), 879–883. MR**0007432****[4]**M. L. Cartwright,*On certain integral functions of order one*, Quart. J. Math. Oxford Ser. no. 1 vol. 7 (1936) pp. 46-55.**[5]**H. C. Liu,*Entire functions bounded at integers*, to appear in J. Indian Math. Soc.**[6]**A. J. Macintyre,*Laplace's transformation and integral functions*, Proc. London Math. Soc. (2) vol. 45 (1938-1939) pp. 1-20.**[7]**N. E. Nörlund,*Leçons sur les séries d'interpolation*, Paris, Gauthier-Villars, 1926, p. 4, (16) p. 9.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30.55

Retrieve articles in all journals with MSC: 30.55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1961-0125222-4

Article copyright:
© Copyright 1961
American Mathematical Society