Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Interpolation on finite open Riemann surfaces


Author: E. L. Stout
Journal: Proc. Amer. Math. Soc. 18 (1967), 274-278
MSC: Primary 30.85; Secondary 30.36
DOI: https://doi.org/10.1090/S0002-9939-1967-0206315-5
MathSciNet review: 0206315
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors, Open Riemann surfaces and extremal problems on compact sub-regions, Comment. Math. Helv. 24 (1950), 100-134. MR 0036318 (12:90b)
  • [2] F. Forelli, Another proof of the corona conjecture for finite open Riemann surfaces, Illinois J. Math. 10 (1966), 367-380.
  • [3] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 0133008 (24:A2844)
  • [4] H. L. Royden, The boundary values of analytic and harmonic functions, Math. Z. 78 (1962), 1-24. MR 0138747 (25:2190)
  • [5] E. L. Stout, Bounded holomorphic functions on finite Riemann surfaces, Trans. Amer. Math. Soc. 120 (1965), 255-285. MR 0183882 (32:1358)
  • [6] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 0114894 (22:5712)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.85, 30.36

Retrieve articles in all journals with MSC: 30.85, 30.36


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1967-0206315-5
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society