Rings of continuous functions on open convex subsets of

Author:
Lyle E. Pursell

Journal:
Proc. Amer. Math. Soc. **19** (1968), 581-585

MSC:
Primary 46.25

DOI:
https://doi.org/10.1090/S0002-9939-1968-0229007-6

MathSciNet review:
0229007

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**I. Gelfand and A. Kolmogoroff,*On rings of continuous functions on topological spaces*, C. R. (Doklady) Acad. Sci. URSS**22**(1939), 11-15.**[2]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, Van Nostrand, Princeton, N. J., 1960. MR**0116199 (22:6994)****[3]**Sigurdur Helgason,*Differential geometry and symmetric spaces*, Academic Press, New York, 1962. MR**0145455 (26:2986)****[4]**Edwin Hewitt,*Rings of real-valued continuous functions*. I, Trans. Amer. Math. Soc.**64**(1948), 45-99. MR**0026239 (10:126e)****[5]**Lyle E. Pursell,*An algebraic characterization of fixed ideals in certain function rings*, Pacific J. Math.**5**(1955), 963-969. MR**0083478 (18:714e)****[6]**-,*Uniform approximation of real continuous functions on the real line by infinitely differentiable functions*, Math. Mag.**40**(1967), 263-265. MR**0223507 (36:6555)****[7]**Hassler Whitney,*Differentiability of the remainder term in Taylor's formula*, Duke Math. J.**10**(1943), 153-158. MR**0007782 (4:192e)****[8]**Solution to problem E1789, Amer. Math. Monthly**73**(1966), 779-780.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46.25

Retrieve articles in all journals with MSC: 46.25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1968-0229007-6

Article copyright:
© Copyright 1968
American Mathematical Society