Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rings of continuous functions on open convex subsets of $ R\sp{n}$


Author: Lyle E. Pursell
Journal: Proc. Amer. Math. Soc. 19 (1968), 581-585
MSC: Primary 46.25
DOI: https://doi.org/10.1090/S0002-9939-1968-0229007-6
MathSciNet review: 0229007
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] I. Gelfand and A. Kolmogoroff, On rings of continuous functions on topological spaces, C. R. (Doklady) Acad. Sci. URSS 22 (1939), 11-15.
  • [2] Leonard Gillman and Meyer Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 0116199 (22:6994)
  • [3] Sigurdur Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [4] Edwin Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64 (1948), 45-99. MR 0026239 (10:126e)
  • [5] Lyle E. Pursell, An algebraic characterization of fixed ideals in certain function rings, Pacific J. Math. 5 (1955), 963-969. MR 0083478 (18:714e)
  • [6] -, Uniform approximation of real continuous functions on the real line by infinitely differentiable functions, Math. Mag. 40 (1967), 263-265. MR 0223507 (36:6555)
  • [7] Hassler Whitney, Differentiability of the remainder term in Taylor's formula, Duke Math. J. 10 (1943), 153-158. MR 0007782 (4:192e)
  • [8] Solution to problem E1789, Amer. Math. Monthly 73 (1966), 779-780.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46.25

Retrieve articles in all journals with MSC: 46.25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1968-0229007-6
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society