Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Three sets of conditions on rings


Author: Abraham A. Klein
Journal: Proc. Amer. Math. Soc. 25 (1970), 393-398
MSC: Primary 16.50
DOI: https://doi.org/10.1090/S0002-9939-1970-0263869-0
MathSciNet review: 0263869
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define a set of conditions $ {\mathfrak{L}_m}$ on a ring $ R$ using the notion of $ R$-dependence of elements. We prove that $ {\mathfrak{L}_1},{\mathfrak{L}_2}, \cdots $ is a strictly decreasing sequence of conditions. Two other sequences of conditions are considered and we prove that they are also strictly decreasing and we obtain their relation to $ {\mathfrak{L}_m}$.


References [Enhancements On Off] (What's this?)

  • [1] G. M. Bergman, Commuting elements in free algebras, Doctoral Dissertation, Harvard University, Cambridge, Mass., 1968.
  • [2] P. M. Cohn, Free ideal rings, J. Algebra 1 (1964), 47-69. MR 28 #5095. MR 0161891 (28:5095)
  • [3] R. Doss, Sur l'immersion d'un semi-groupe dans un groupe, Bull. Sci. Math. (2) 72 (1948), 139-150. MR 10, 591. MR 0029384 (10:591c)
  • [4] A. A. Klein, Rings nonembeddable in fields with multiplicative semigroups embeddable in groups, J. Algebra 7 (1967), 100-125. MR 37 #6309. MR 0230749 (37:6309)
  • [5] -, Necessary conditions for embedding rings into fields, Trans. Amer. Math. Soc. 137 (1969), 141-151. MR 38 #4510. MR 0236212 (38:4510)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16.50

Retrieve articles in all journals with MSC: 16.50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0263869-0
Keywords: Left and right $ R$-dependent, $ m$-fir, $ m$-term algorithm, formal series, special series
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society