Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An upper asymptotic estimate of Brownian path variation


Author: Olaf P. Stackelberg
Journal: Proc. Amer. Math. Soc. 26 (1970), 168-173
MSC: Primary 60.62
DOI: https://doi.org/10.1090/S0002-9939-1970-0263160-2
MathSciNet review: 0263160
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X(t,\omega )$ be standard Brownian motion, and denote by $ {\mathfrak{B}_n}$ the family of all partitions of $ [0, 1]$ with minimum distance between successive partition points $ \geqq 1/n$. Then

$\displaystyle P[ \lim \sup_{n \to \infty} \sup_{P \in \mathfrak{B}_{2n} \frac{\... ...g n}{\log^2 n} \sum\limits_{t_i \in P} (X(t_i) - X(t_{i - 1}))^2 \leqq K} ] = 1$

where $ K$ is an appropriate constant.

References [Enhancements On Off] (What's this?)

  • [1] J. L. Doob, Stochastic processes, Wiley, New York and Chapman & Hall, London, 1953. MR 15, 445. MR 0058896 (15:445b)
  • [2] P. E. Greenwood, An asymptotic estimate of Brownian path variation, Proc. Amer. Math. Soc. 21 (1969), 134-138. MR 38 #3920. MR 0235617 (38:3920)
  • [3] P. Lévy, Le mouvement brownien plan, Amer. J. Math. 62 (1940), 487-550. MR 2, 107. MR 0002734 (2:107g)
  • [4] O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards 45 (1950), 239-245; Collected Math. Works (Cincinnati, 1955), 1401-1407. MR 13, 648. MR 0045863 (13:648c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60.62

Retrieve articles in all journals with MSC: 60.62


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0263160-2
Keywords: Brownian motion, sample path variation, asymptotic estimate
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society