Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tame polyhedra in wild cells and spheres


Author: R. B. Sher
Journal: Proc. Amer. Math. Soc. 30 (1971), 169-174
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9939-1971-0281178-1
MathSciNet review: 0281178
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that each arc on a disk D in $ {E^4}$ can be homeomorphically approximated by an arc in D which is tame in $ {E^4}$. Some applications of this are given. Also, we construct an everywhere wild $ (n - 1)$-sphere in $ {E^n},n \geqq 3$, each of whose arcs is tame in $ {E^n}$.


References [Enhancements On Off] (What's this?)

  • [1] Steve Armentrout, Homotopy properties of decomposition Spaces, Trans. Amer. Math. Soc. 143 (1969), 499-507. MR 0273574 (42:8452)
  • [2] R. H. Bing, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1-15. MR 23 #A630. MR 0123302 (23:A630)
  • [3] J. L. Bryant. On embeddings with locally nice cross-sections (to appear). MR 0276983 (43:2721)
  • [4] J. C. Cantrell, n-frames in Euclidean k-space, Proc. Amer. Math. Soc. 15 (1964), 574-578. MR 29 #1627. MR 0164330 (29:1627)
  • [5] R. J. Daverman and W. T. Eaton, An equivalence for the embeddings of cells in a 3-manifold, Trans. Amer. Math. Soc. 145 (1969), 369-381. MR 40 #3519. MR 0250280 (40:3519)
  • [6] -, Each disk in $ {E^n}$ can be squeezed to an arc (to appear).
  • [7] Herman Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195-210. MR 30 #3456. MR 0173243 (30:3456)
  • [8] John Hollingsworth and R. B. Sher, Triangulating neighborhoods in topological manifolds (to appear). MR 0296952 (45:6011)
  • [9] C. Lacher, Locally flat strings and half-strings, Proc. Amer. Math. Soc. 18 (1967), 299-304. MR 35 #3670. MR 0212805 (35:3670)
  • [10] T. B. Rushing, Everywhere wild cells and spheres (to appear). MR 0301741 (46:896)
  • [11] Charles L. Seebeck III, Tame arcs on wild cells (to appear).
  • [12] R. B. Sher, Determining the cellularity of a 1-complex by properties of its arcs, Proc. Amer. Math. Soc. 26 (1970), 491-498. MR 0270353 (42:5242)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0281178-1
Keywords: Everywhere wild, homeomorphically approximate, disk squeezing, cellularity
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society