Singularities of a class of meromorphic functions

Authors:
Nicholas P. Callas and W. J. Thron

Journal:
Proc. Amer. Math. Soc. **33** (1972), 445-454

MSC:
Primary 30A22; Secondary 30A68

DOI:
https://doi.org/10.1090/S0002-9939-1972-0291420-X

MathSciNet review:
0291420

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Estimates are obtained for the number of singular points, which are not poles, lying on the unit circle of the complex plane of a class of meromorphic functions which are represented by *C*-fractions.

**[1]**N. P. Callas and W. J. Thron,*Singularities of meromorphic functions represented by regular 𝐶-fractions*, Norske Vid. Selsk. Skr. (Trondheim)**1967**(1967), no. 6, 11. MR**0223547****[2]**N. P. Callas and W. J. Thron,*Singular points of certain functions represented by 𝐶-fractions*, J. Indian Math. Soc. (N.S.)**32**(1968), no. suppl. I, 325–353 (1970). MR**0291419****[3]**Kari Hag,*A theorem on 𝑇-fractions corresponding to a rational function*, Proc. Amer. Math. Soc.**25**(1970), 247–253. MR**0259081**, https://doi.org/10.1090/S0002-9939-1970-0259081-1**[4]**Thomas H. Jefferson,*Truncation error estimates for 𝑇-fractions*, SIAM J. Numer. Anal.**6**(1969), 359–364. MR**0260147**, https://doi.org/10.1137/0706033**[5]**William B. Jones and W. J. Thorn,*Further properties of 𝑇-fractions*, Math. Ann.**166**(1966), 106–118. MR**0200425**, https://doi.org/10.1007/BF01361442**[6]**Walter Leighton and W. T. Scott,*A general continued fraction expansion*, Bull. Amer. Math. Soc.**45**(1939), 596–605. MR**0000041**, https://doi.org/10.1090/S0002-9904-1939-07046-8**[7]**Arne Magnus,*Certain continued fractions associated with the Padé table*, Math. Z.**78**(1962), 361–374. MR**0150271**, https://doi.org/10.1007/BF01195180**[8]**Arne Magnus,*Expansion of power series into 𝑃-fractions*, Math. Z.**80**(1962), 209–216. MR**0150272**, https://doi.org/10.1007/BF01162378**[9]**Arne Magnus,*On 𝑃-expansions of power series*, Norske Vid. Selsk. Skr. (Trondheim)**1964**(1964), no. 3, 14. MR**0183854****[10]**Arne Magnus,*The connection between 𝑃-fractions and associated fractions*, Proc. Amer. Math. Soc.**25**(1970), 676–679. MR**0259412**, https://doi.org/10.1090/S0002-9939-1970-0259412-2**[11]**W. T. Scott and H. S. Wall,*Continued fraction expansions for arbitrary power series*, Ann. of Math. (2)**41**(1940), 328–349. MR**0001777**, https://doi.org/10.2307/1969008**[12]**Vikramaditya Singh and W. J. Thron,*On the number of singular points, located on the unit circle, of certain functions represented by 𝐶-fractions*, Pacific J. Math.**6**(1956), 135–143. MR**0080631****[13]**W. J. Thron,*Some properties of continued fractions 1+𝑑₀𝑧+𝐾(𝑧/(1+𝑑_{𝑛}𝑧))*, Bull. Amer. Math. Soc.**54**(1948), 206–218. MR**0024528**, https://doi.org/10.1090/S0002-9904-1948-08985-6**[14]**W. J. Thron,*Singular points of functions defined by 𝐶-fractions*, Proc. Nat. Acad. Sci. U. S. A.**36**(1950), 51–54. MR**0033363****[15]**W. J. Thron,*A class of meromorphic functions having the unit circle as a natural boundary*, Duke Math. J.**20**(1953), 195–198. MR**0056691****[16]**Haakon Waadeland,*A convergence property of certain 𝑇-fraction expansions*, Norske Vid. Selsk. Skr. (Trondheim)**1966**(1966), no. 9, 22. MR**0225978****[17]**Haakon Waadeland,*On 𝑇-fractions of certain functions with a first order pole at the point of infinity*, Norske Vid. Selsk. Forh. (Trondheim)**40**(1967), 1–6. MR**0233968****[18]**Haakon Waadeland,*On 𝑇-fractions of functions holomorphic and bounded in a circular disc*, Norske Vid. Selsk. Skr. (Trondheim)**1964**(1964), no. 8, 19. MR**0177100****[19]**H. S. Wall,*Analytic Theory of Continued Fractions*, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR**0025596**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30A22,
30A68

Retrieve articles in all journals with MSC: 30A22, 30A68

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1972-0291420-X

Keywords:
Continued fraction,
*C*-fraction,
*T*-fraction,
*P*-fraction,
meromorphic function

Article copyright:
© Copyright 1972
American Mathematical Society