Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Arens product and commutative Banach algebras


Author: Pak Ken Wong
Journal: Proc. Amer. Math. Soc. 37 (1973), 111-113
MSC: Primary 46H99; Secondary 46J05
DOI: https://doi.org/10.1090/S0002-9939-1973-0306912-5
MathSciNet review: 0306912
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this note is to generalize two recent results by the author for commutative Banach algebras. Let A be a commutative Banach algebra with carrier space $ {X_A}$ and $ \pi $ the canonical embedding of A into its second conjugate space $ {A^{ \ast \ast }}$ (with the Arens product). We show that if A is a semisimple annihilator algebra, then $ \pi (A)$ is a two-sided ideal of $ {A^{ \ast \ast }}$. We also obtain that if A is a dense two-sided ideal of $ {C_0}({X_A})$, then $ \pi (A)$ is a two-sided ideal of $ {A^{ \ast \ast }}$ if and only if A is a modular annihilator algebra.


References [Enhancements On Off] (What's this?)

  • [1] R. F. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 13, 659. MR 0045941 (13:659f)
  • [2] B. A. Barnes, Modular annihilator algebras, Canad. J. Math. 18 (1966), 566-578, MR 33 #2681. MR 0194471 (33:2681)
  • [3] -, Banach algebras which are ideals in a Banach algebra, Pacific J. Math. 38 (1971), 1-7. MR 0310640 (46:9738)
  • [4] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 26 #622. MR 0143056 (26:622)
  • [5] C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [6] B. J. Tomiuk and P. K. Wong, The Arens product and duality in $ {B^\ast}$-algebras, Proc. Amer. Math. Soc. 25 (1970), 529-535. MR 41 #4256. MR 0259620 (41:4256)
  • [7] P. K. Wong, On the Arens product and annihilator algebras, Proc. Amer. Math. Soc. 30 (1971), 79-83. MR 0281005 (43:6724)
  • [8] -, Modular annihilator $ {A^\ast}$-algebras, Pacific J. Math. 37 (1971), 825-834. MR 0305083 (46:4213)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46H99, 46J05

Retrieve articles in all journals with MSC: 46H99, 46J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0306912-5
Keywords: Arens product, modular annihilator, annihilator algebra, carrier space
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society