Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Perturbations of linear $ m$-accretive operations


Author: Noboru Okazawa
Journal: Proc. Amer. Math. Soc. 37 (1973), 169-174
MSC: Primary 47A55; Secondary 47B44
DOI: https://doi.org/10.1090/S0002-9939-1973-0313850-0
MathSciNet review: 0313850
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sufficient condition is given for the sum $ A + B$ of two linear m-accretive operators A and B in a Hilbert space to be m-accretive. This condition is expressed in terms of $ \operatorname{Re} (Au,Bu)$ for u in D, where D is a certain linear manifold contained in $ D(A + B)$.


References [Enhancements On Off] (What's this?)

  • [1] H. Brezis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math. 23 (1970), 123-144. MR 41 #2454. MR 0257805 (41:2454)
  • [2] P. R. Chernoff, Perturbations of dissipative operators with relative bound one, Proc. Amer. Math. Soc. 33 (1972), 72-74. MR 0296745 (45:5804)
  • [3] J. Glimm and A. Jaffe, Singular perturbations of selfadjoint operators, Comm. Pure Appl. Math. 22 (1969), 401-414. MR 43 #7955. MR 0282243 (43:7955)
  • [4] K. Gustafson, A perturbation lemma, Bull. Amer. Math. Soc. 72 (1966), 334-338. MR 32 #4555. MR 0187101 (32:4555)
  • [5] T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, Berlin and New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [6] -, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. MR 37 #1820. MR 0226230 (37:1820)
  • [7] Y. Konishi, A remark on perturbation of m-accretive operators in Banach space, Proc. Japan Acad. 47 (1971), 452-455. MR 0318994 (47:7540)
  • [8] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698. MR 24 #A2248. MR 0132403 (24:A2248)
  • [9] N. Okazawa, Two perturbation theorems for contraction semigroups in a Hilbert space, Proc. Japan Acad. 45 (1969), 850-853. MR 42 #2312. MR 0267410 (42:2312)
  • [10] -, A perturbation theorem for linear contraction semigroups on reflexive Banach spaces, Proc. Japan Acad. 47 (1971), 947-949. MR 0313877 (47:2429)
  • [11] A. Yoshikawa, On perturbation of closed operators in a Banach space, J. Fac. Sci. Hokkaido Univ. 22 (1972), 50-61. MR 0306954 (46:6075)
  • [12] K. Yosida, Functional analysis, 2nd ed., Die Grundlehren der math. Wissenschaften, Band 123, Springer-Verlag, Berlin and New York, 1968. MR 39 #741. MR 0239384 (39:741)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A55, 47B44

Retrieve articles in all journals with MSC: 47A55, 47B44


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0313850-0
Keywords: Singular perturbations, accretive (dissipative) operators, Yosida approximations, cores, selfadjoint operators, regular (relatively bounded) perturbations
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society