Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Rings satisfying monomial constraints

Authors: Mohan S. Putcha and Adil Yaqub
Journal: Proc. Amer. Math. Soc. 39 (1973), 10-18
MSC: Primary 16A38
MathSciNet review: 0313306
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following theorem is proved: Suppose $ R$ is an associative ring and suppose $ J$ is the Jacobson radical of $ R$. Suppose that for all $ {x_1}, \cdots ,{x_n}$ in $ R$, there exists a word $ {w_{{x_1}}}, \cdots ,{x_n}({x_1}, \cdots ,{x_n})$, depending on $ {x_1}, \cdots ,{x_n}$, in which at least one $ {x_i}$ ($ i$ varies) is missing, and such that $ {x_1} \cdots {x_n} = {w_{{x_1}, \cdots ,{x_n}}}({x_1}, \cdots ,{x_n})$. Then $ J$ is a nil ring of bounded index and $ R/J$ is finite. It is further proved that a commutative nil semigroup satisfies the above identity if and only if it is nilpotent.

References [Enhancements On Off] (What's this?)

  • [1] I. N. Herstein, Theory of rings, Lecture Notes, University of Chicago, Chicago, Ill., 1961.
  • [2] N. Jacobson, Structure of rings, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R.I., 1964. MR 36 #5158. MR 0222106 (36:5158)
  • [3] I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, Mich., 1954. MR 16, 444. MR 0065561 (16:444g)
  • [4] T. Nagell, Introduction to number theory, 2nd ed., Chelsea, New York, 1964. MR 30 #4714. MR 0174513 (30:4714)
  • [5] H. Rademacher, Lectures on elementary number theory, Blaisdell, Waltham, Mass., 1964. MR 30 #1079. MR 0170844 (30:1079)
  • [6] B. L. van der Waerden, Elementarer Beweis eines zahlentheoretischen Existenztheorems, J. Reine Angew. Math. 171 (1934), 1-3.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A38

Retrieve articles in all journals with MSC: 16A38

Additional Information

Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society