Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Reflexivity of $ L(E,\,F)$


Author: J. R. Holub
Journal: Proc. Amer. Math. Soc. 39 (1973), 175-177
MSC: Primary 46B10; Secondary 47D15
DOI: https://doi.org/10.1090/S0002-9939-1973-0315407-4
MathSciNet review: 0315407
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ and $ F$ be Banach spaces and denote by $ L(E,F)$ (resp., $ K(E,F))$ the space of all bounded linear operators (resp., all compact operators) from $ E$ to $ F$. In this note the following theorem is proved: If $ E$ and $ F$ are reflexive and one of $ E$ and $ F$ has the approximation property then the following are equivalent:

(i) $ L(E,F)$ is reflexive,

(ii) $ L(E,F) = K(E,F)$,

(iii) if $ T \ne 0 \in L(E,F)$, then $ \vert\vert T\vert\vert = \vert\vert Tx\vert\vert$ for some $ x \in E,\vert\vert x\vert\vert = 1$.

This result extends a recent result of Ruckle (Proc. Amer. Math. Soc. 34 (1972), 171-174) who showed (i) and (ii) are equivalent when both $ E$ and $ F$ have the approximation property. Moreover the proof suggests strongly that the assumption of the approximation property may be dropped.


References [Enhancements On Off] (What's this?)

  • [1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. MR 22 #5872. MR 0115069 (22:5872)
  • [2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [3] J. Holub, Tensor product bases and tensor diagonals, Trans. Amer. Math. Soc. 151 (1970), 563-579. MR 43 #5286. MR 0279564 (43:5286)
  • [4] -, Hilbertian operators and reflexive tensor products, Pacific J. Math. 36 (1971), 185-194. MR 0301487 (46:645)
  • [5] R. C. James, Characterizations ofreflexivity, Studia Math. 23 (1963/64), 205-216. MR 30 #431. MR 0170192 (30:431)
  • [6] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces with an appendix on compactness of operators from $ {L^p}(\mu )$ to $ {L^r}(v)$, J. Functional Analysis 4 (1969), 176-214. MR 40 #3277. MR 0250036 (40:3277)
  • [7] W. Ruckle, Reflexivity of $ L(E,F)$, Proc. Amer. Math. Soc. 34 (1972), 171-174. MR 0291777 (45:868)
  • [8] R. Schatten, A theory of Cross spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N.J., 1950. MR 12, 186. MR 0036935 (12:186e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B10, 47D15

Retrieve articles in all journals with MSC: 46B10, 47D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0315407-4
Keywords: Spaces of linear operators, spaces of compact operators, norming point of an operator, reflexive space
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society