Product integrals and exponentials in commutative Banach algebras
Author:
Jon C. Helton
Journal:
Proc. Amer. Math. Soc. 39 (1973), 155162
MSC:
Primary 26A39; Secondary 46J99
MathSciNet review:
0316643
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Functions are from to , where represents the real numbers and represents a commutative Banach algebra with identity element. The function on only if exists and is not zero and there exists a subdivision of and a number such that if is a refinement of , then exists and . If on , then each of the following consists of two equivalent statements: A. (1) on , and (2) exists. B. (1) on and , and (2) . Further, if on , each of and exist for and has bounded variation on , then each of the following consists of two equivalent statements: C. (1) on , and (2) exists. D. (1) on and , and (2) .
 [1]
W.
P. Davis and J.
A. Chatfield, Concerning product integrals and
exponentials, Proc. Amer. Math. Soc. 25 (1970), 743–747.
MR
0267068 (42 #1970), http://dx.doi.org/10.1090/S00029939197002670688
 [2]
Burrell
W. Helton, Integral equations and product integrals, Pacific
J. Math. 16 (1966), 297–322. MR 0188731
(32 #6167)
 [3]
Burrell
W. Helton, A product integral representation for
a Gronwall inequality, Proc. Amer. Math.
Soc. 23 (1969),
493–500. MR 0248310
(40 #1562), http://dx.doi.org/10.1090/S00029939196902483108
 [4]
Jon
C. Helton, Some interdependencies of sum and
product integrals, Proc. Amer. Math. Soc.
37 (1973),
201–206. MR 0308340
(46 #7454), http://dx.doi.org/10.1090/S00029939197303083405
 [5]
, Product integrals, bounds and inverses, Texas J. Sci. (to appear).
 [6]
J.
S. MacNerney, Integral equations and semigroups, Illinois J.
Math. 7 (1963), 148–173. MR 0144179
(26 #1726)
 [7]
P.
R. Masani, Multiplicative Riemann integration in
normed rings, Trans. Amer. Math. Soc. 61 (1947), 147–192.
MR
0018719 (8,321c), http://dx.doi.org/10.1090/S00029947194700187196
 [1]
 W. P. Davis and J. A. Chatfield, Concerning product integrals and exponentials, Proc. Amer. Math. Soc. 25 (1970), 743747. MR 42 #1970. MR 0267068 (42:1970)
 [2]
 B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297322. MR 32 #6167. MR 0188731 (32:6167)
 [3]
 , A product integral representation for a Gronwall inequality, Proc. Amer. Math. Soc. 23 (1969), 493500. MR 40 #1562. MR 0248310 (40:1562)
 [4]
 J. C. Helton, Some interdependencies of sum and product integrals, Proc. Amer. Math. Soc. 37 (1973), 201206. MR 0308340 (46:7454)
 [5]
 , Product integrals, bounds and inverses, Texas J. Sci. (to appear).
 [6]
 J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148173. MR 26 #1726. MR 0144179 (26:1726)
 [7]
 P. R. Masani, Multiplicative Riemann integration in normed rings, Trans. Amer. Math. Soc. 61 (1947), 147192. MR 8, 321. MR 0018719 (8:321c)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
26A39,
46J99
Retrieve articles in all journals
with MSC:
26A39,
46J99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197303166433
PII:
S 00029939(1973)03166433
Keywords:
Sum integral,
product integral,
subdivisionrefinement integral,
interval function,
interdependency,
exponential,
commutative Banach algebra
Article copyright:
© Copyright 1973
American Mathematical Society
