Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compact $ \mathcal{G}$-souslin sets are $ G_\delta$'s


Author: Eric John Braude
Journal: Proc. Amer. Math. Soc. 40 (1973), 250-252
MSC: Primary 54H05
DOI: https://doi.org/10.1090/S0002-9939-1973-0321047-3
MathSciNet review: 0321047
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The result of the title generalizes and places in a new set-theoretical context the well-known theorem of Halmos that every compact Baire set is a $ {\mathcal{G}_\delta }$. Šneĭder's result of 1968 that every perfectly normal compact space with $ \mathcal{G}$-Souslin diagonal is metrizable, can now be seen to be true without the perfect normality condition.


References [Enhancements On Off] (What's this?)

  • [1] W. Comfort, Closed Baire sets are (sometimes) zero-sets, Proc. Amer. Math. Soc. 25 (1970), 870-875. MR 41 #3695. MR 0259053 (41:3695)
  • [2] -, A survey of cardinal invariants, General Topology and Appl. 1 (1971), 163-199. MR 44 #7510. MR 0290326 (44:7510)
  • [3] Z. Frolík, A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J. 20 (95) (1970), 406-467. MR 42 #1660. MR 0266757 (42:1660)
  • [4] P. Halmos, Measure theory, Van Nostrand, Princeton, N.J., 1950. MR 16, 22. MR 0033869 (11:504d)
  • [5] F. Hausdorff, Set theory, 2nd. ed., Chelsea, New York, 1962. MR 25 #4999. MR 0141601 (25:4999)
  • [6] C. A. Rogers, Compact Borelian sets, J. London Math. Soc. (2) 2 (1970), 369-371. MR 41 #4473. MR 0259844 (41:4473)
  • [7] K. Ross and K. Stromberg, Baire sets and Baire measures, Ark. Mat. 6 (1965), 151-160. MR 33 #4224. MR 0196029 (33:4224)
  • [8] V. Šneĭder, Continuous images of Souslin and Borel sets. Metrization theorems. Dokl. Akad. Nauk SSSR 50 (1945), 77-79. (Russian) MR 14, 782. MR 0053493 (14:782d)
  • [9] -, Descriptive theory of sets in topological spaces, Učen. Zap. Moskov. Gos. Univ. Matematika, Tom II, 135 (1948), 37-85. (Russian), MR 11, 506. MR 0033874 (11:506b)
  • [10] -, A metrization theorem, Izv. Vysš, Učebn. Zaved. Matematika 73 (1968), 122-124. (Russian) MR 37 #3516. MR 0227932 (37:3516)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H05

Retrieve articles in all journals with MSC: 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0321047-3
Keywords: Souslin, compact, $ {\mathcal{G}_\delta }$, second countable
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society