Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Hochschild dimension of a separably generated field


Author: B. L. Osofsky
Journal: Proc. Amer. Math. Soc. 41 (1973), 24-30
MSC: Primary 13C15
MathSciNet review: 0318129
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be an $ {\aleph _k}$-generated field extension of the field $ F$ with transcendence degree $ n$. Set $ \operatorname{bidim}(K)$ = the projective dimension of $ K$ as a $ K{ \otimes _F}K$-module. Then $ K$ locally separably generated implies $ \operatorname{bidim}(K) \leqq k + n + 1$, and $ K$ separably generated implies $ \operatorname{bidim}(K) = k + n + 1$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13C15

Retrieve articles in all journals with MSC: 13C15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1973-0318129-9
PII: S 0002-9939(1973)0318129-9
Keywords: Hochschild dimension of fields, bidimensions of fields, cohomology of algebras
Article copyright: © Copyright 1973 American Mathematical Society